
AN EVOLUTIONARY APPROACH TO
NATURAL LANGUAGE GRAMMAR INDUCTION

MARGARET AYCINENA
MYKEL J. KOCHENDERFER

DAVID CARL MULFORD

Abstract. This paper describes an approach for evolving natural language

grammars using a genetic algorithm, based on part-of-speech tagged natural

language examples. Grammars are represented by the genetic algorithm as
a finite string of non-terminals and pre-terminals corresponding to the rules

of a context-free grammar in Chomsky Normal Form. Fitness is based on
the number of sentences correctly parsed by the grammar from a selection
of language examples, inversely related to the number of random sentences

parsed by the grammar, and discounted by the length of the string representing
the grammar. Our experimentation reveals that this evolutionary approach
produces grammars with high precision and recall, although they are dissimilar

to grammars designed by humans.

1. Introduction

Grammar induction, also known as grammatical inference [1], describes a process
in which a system produces a grammar given a set of corpora. Given the complexity
of natural language and the increasingly high availability of large bodies of text,
automated development of grammars is and will continue to be an important area
of natural language processing and machine learning.

Many previous grammar induction systems have worked on the assumption that
grammar induction is a subset of inductive logic programming (ILP), and as such,
have primarily depended on ILP techniques. Much less work has been done on
using evolutionary techniques to evolve natural language grammars.

One of the few papers applying evolutionary techniques to grammar induction,
Keller and Lutz [4], used a genetic algorithm to evolve stochastic context-free gram-
mars for finite languages. In this work, only positive examples of language data
were presented. The fitness function was based on the probability of a particular
grammar given the corpus, but the minimum description length principle was also
incorporated so that simpler grammars would be preferred. Notably, the genetic
algorithm was applied not to evolve a grammar itself, but to evolve probability pa-
rameter settings for a pre-chosen covering Chomsky Normal Form grammar. And
perhaps most importantly (for this work, at least), the languages of the corpora
were formal; e.g. the language of all strings consisting of equal numbers of a’s and
b’s, and palindromes over {a, b}.

This paper presents some work that goes significantly beyond what was done
in [4]. First, the system actually evolves non-stochastic grammars, rather than

Date: June 2, 2003.
Key words and phrases. grammar induction, genetic algorithm.

1

2 MARGARET AYCINENA MYKEL J. KOCHENDERFER DAVID CARL MULFORD

simply the probability parameters for a pre-chosen grammar. Second, the system
uses both positive and negative examples of language data. Third, the fitness
function was based on the ability of a given grammar to parse the data. Finally,
the corpora were samples of part-of-speech tagged natural English language.

2. Methods

In this section, we describe the evolutionary approach used to induce a grammar
for a part-of-speech tagged natural language corpus. Although the approach is
based on the idea of a genetic algorithm as originally presented in [3] and later
in [2], we made a few significant adaptations that make the process more suitable
for grammar induction.

2.1. Genetic Algorithm. Chromosomes represent context-free grammars with
variable-length strings of non-terminals and pre-terminals. For example, the string

SABABCBCDCAE

would represent the following CFG:

S → A B

A → B C

B → C D

C → A E

We restrict the set of possible strings such that the left side of each produc-
tion (i.e. every third character in the string) is a non-terminal. All of the other
characters may be either pre-terminals or non-terminals.

The population is organized on the surface of a torus, represented as a two-
dimensional grid with opposite sides connected (similar to [4]). The initial popu-
lation is generated randomly from a uniform distribution of chromosomes of some
specified length.

The genetic algorithm then executes the following select-breed-replace cycle:

(1) Select an individual randomly from the grid
(2) Breed that individual with its most highly fit neighbor to produce two

children
(3) Replace the weakest parent by the fittest child

In this paper, we refer to a single iteration through this cycle as a generation—
even though only one individual in the population is replaced.

Given two parents, we create two children by first applying cross-over and then
probabilistically applying mutation. Cross-over is accomplished by selecting a ran-
dom production in each parent. Then a random point in these productions is
selected and cross-over is performed, swapping the remainder of the strings after
the cross-over points. Following cross-over, we iterate over each non-terminal and
pre-terminal in the strings and apply mutation according to a specified probability.
A mutation is simply the swapping of a non-terminal or pre-terminal with another
non-terminal or pre-terminal.

EVOLUTIONARY GRAMMAR INDUCTION 3

2.2. Parsing. At the core of the fitness function is the ability to parse a sentence.
Since our grammar is in Chomsky Normal Form, we can use the Cocke-Kasami-
Younger (CKY) algorithm. This algorithm is efficient (O(n3) performance) for
grammars of this type. The algorithm can be easily extended to handle probabilistic
context-free grammars.

Because speed is of the utmost importance, we have implemented the parser in
C++. In order to make the parser as fast as possible, we have used the following
implementation strategies:

(1) When filling a square in the well-formed sentence table, we need to know
which symbols can produce the two child symbols. A 2D array is used to
store grammar rules. Entry (a, b) contains a vector of all parents c that
produce a and b (all rules c → ab).

(2) 2D arrays are simulated using a 1D array. If you have a pointer to an entry,
you can increment it by 1 to advance to the next column, or increment
it by num columns to reach the next row. This eliminates the need for
multiplication operations to index into the WFST when iterating over split
points. Also, the array’s size is forced to be a power of 2 so that the initial
indexing operation can be done with a bit-shift rather than a multiplication.

(3) STL vectors are used rather than STL sets for each WFST entry. We need
to iterate over a table entry much more than we need to insert, so the
the faster iteration provided by the vector trumps the gains from log(n)
insertion time from a set.

2.3. Corpus Selection and Preparation. Evolving grammars for natural lan-
guage requires an appropriate selection of prepared corpora for training, testing,
and cross-validation. We used a combination of self-selected (taken from online
sources) and pre-selected (from the Brown linguistic data) corpora.

Specifically, the corpora were as follows:

• A selection of children’s books, taken from
http://www.magickeys.com/books.

• The Wizard of Oz (L. Frank Baum), taken from
http://www.ucalgary.ca/ dkbrown/storclas.html.

• Alice in Wonderland (Lewis Carroll), taken from
http://www.ucalgary.ca/ dkbrown/storclas.html.

• Tom Sawyer (Mark Twain), taken from
http://www.infomotions.com/alex/authors.html.

• Five Brown untagged corpora, brown1 a through brown1 e, taken from
/afs/ir.stanford.edu/data/linguistic-data/Brown/ICAME-Brown1/.

A wide spectrum of corpora were selected in order to compare the effectiveness of
our evolutionary technique on increasingly sophisticated texts, ranging from young
children through young adult to full adult.

Once the corpora were gathered, they were prepared for part-of-speech tagging:
all special markings and tags used in the Brown corpora were removed, and the
corpora were massaged to have exactly one sentence per line with no excess white
space or new lines.

The formatted corpora were then part-of-speech tagged using the well-known
Brill tagger, found at
/afs/ir.stanford.edu/class/cs224n/src/brill-tagger/Bin and Data.

4 MARGARET AYCINENA MYKEL J. KOCHENDERFER DAVID CARL MULFORD

The tagged sentences were then post-processed to remove the English words,
leaving only the tags themselves, so that each line was a string of preterminals
representing an actual English sentence.

After some preliminary experiments, it was determined that the tag set used by
the Brill tagger was too expansive for efficient evolution of grammars. Thus, the
tag set was reduced to include only the following set:

N: nouns, pronouns (NN, NNP, NNPS, NNS, PRP, WP)
V: verbs, helping verbs (MD, VB, VBD, VBG, VBN, VBP, VBZ)
J: adjectives, numeral, possessives (CD, JJ, JJR, JJS, PRP$, WP$)
R: adverbs (RB, RBR, RBS, WRB)
P: prepositions, particles (IN, RP, TO)
T: conjunctions, determiners (CC, DT, EX, PDT, WDT)
O: other (foreign words, symbols, and interjections) (FW, SYM, UH)

The final corpora were files containing strings consisting of the above seven
preterminals, one sentence per line.

2.4. Fitness Evaluation. The objective is to induce a grammar that represents
the target language. The likelihood that a grammar represents a target language
given a corpus of sentences belonging to that language is related to the number of
sentences parsed by the grammar. However, a grammar that parses all sentences
is not useful. We must therefore penalize grammars that parse sentences that are
outside of the grammar.

Simply evaluating grammars based on the number of corpus sentences that are
accepted is not enough. It is fairly easy to generate a grammar that will accept
every English sentence. For example, a grammar of the form:

S → S X, for each terminal X

S → X Y, for each pair of terminals X, Y

can parse any string of length at least 2. The first set of rules allows you to append
any terminal to an existing string, and the last set of rules accepts any string of
length 2. Initial runs of the algorithm indicated that a grammar of this form would
be found:

S → T N|T J|N V|N J|P N|P V|P J|R J|V J|R S|N S|P S|T S|J S|V S|S V|S J|S N

This grammar does not accept everything, but it does accept a lot. It contains
rules to prepend as well as append symbols, which allows the bigram to appear
anywhere in the sentence, not just at the beginning.

In order to correct this, we have decided to penalize the grammar for parsing
sentences that are not valid English sentences. Generating sentences outside of
the grammar is rather difficult without knowing the grammar. Our approach in
this paper is to simply generate random sentences. Since most useful grammars
impose a strong restriction on the set of possible sentences, the vast majority of
randomly generated sentences fall outside of the language. In our implementation,
we generated random strings of part-of-speech tags of length 5–15 from a uniform
distribution.

Since extremely long and complex grammars are generally not as useful and
are less likely to be correct by the principle of Occam’s razor, we decided to ex-
ponentially discount the fitness of an evolved grammar based on the length of its
chromosome.

EVOLUTIONARY GRAMMAR INDUCTION 5

Our implementation used the following formula to calculate the fitness of an
evolved individual α.

F (α) = γmax(0,|α|−|P |)C(α)− δI(α)

where P is the set of preterminals, C(α) is the number of parsed sentences from the
corpus, I(α) is the number of sentences parsed from the randomly generated corpus,
δ is the penalty associated with parsing each sentence in the randomly generated
corpus, and γ is the discount factor used for discouraging long grammars.

3. Experimentation and Discussion

3.1. Parameters. Based on a few preliminary experiments the following parame-
ters were settled upon. We made no attempt to further tune these parameters.

• The discount factor γ was set to 0.98.
• The size of the population grid was set to 10× 10 to store the individuals.
• The mutation rate was set to 0.01.
• The number of non-terminals was set to 8.
• The initial random population consisted of grammars with 10 rules.

3.2. Feasibility Experiment. To demonstrate the potential feasibility of our ap-
proach to grammar induction, we experimented with synthetically generated cor-
pora from simple grammars. When ran our algorithm on sentences generated from
the palindrome grammar:

S → A SA|B SB|A A|B B

SA → S A

SB → S B

the algorithm found:

0 → A 3|B 7|A A|B B

3 → 0 A

7 → 0 B

and when run on:

S → A SA|B SB|C SC|A A|B B|C C

SA → S A

SB → S B

SC → S C

the algorithm found:

0 → A 1|B 7|C 2|A A|B B|C C

1 → 0 A

7 → 0 B

2 → 0 C

In both cases, the exact grammars were found within a reasonable amount of
time—6,000 generations for the two character palindromes and 20,500 generations
for the three character palindromes.

6 MARGARET AYCINENA MYKEL J. KOCHENDERFER DAVID CARL MULFORD

3.3. Training Results. In order to train the system and still have data on which
to test our solutions, we divided each corpus into two parts. Every third sentence
was reserved for the test corpus, and the remaining two-thirds became the training
corpus.

We ran the evolution program on each training corpus for 200,000 generations,
with the parameters given above. A complete run took anywhere between 36 and
60 hours, and as such, approximately half of the runs did not finish. Fig. 3.3 shows
the number of generations each run was able to complete, the last grammar that
evolved, and some statistics relating to that grammar: the percentage of positive
examples parsed, the percentage of negative examples parsed, and the fitness. The
grammar is given in string form.

Figure 1. Grammar evolution results

These results bring up several important points. First, our approach clearly does
a decent job of finding a grammar which parses a majority of the accepted sentences,
and a minority of the incorrect sentences. Second, one of the most important roles
of iteration appears to be that it shortens the grammar. The grammar for brown1 c
is extremely long, but it was taken from a much younger generation (15500) than
the other runs.

3.4. Testing Results. The results of the training sessions above can only be fairly
evaluated by testing them on some unseen but related corpora. For this reason,
as mentioned above, we held out every third line of each original corpus as a test

EVOLUTIONARY GRAMMAR INDUCTION 7

corpus. We tested a solution grammar on a corpus by measuring its precision and
recall, and combining these values into the well-known F measure.

As described on p. 268-269 of Manning and Schütze [5], precision is the measure
of the proportion of selected items that the system got right:

P =
#truepositives

#truepositives + #falsepositives

Recall is defined as the proportion of the target items that the system selected:

R =
#truepositives

#truepositives + #falsenegatives

The F measure combines these terms using a harmonic mean:

F =
1

(α(1/P) + (1− α)(1/R)

where P is precision, R is recall, and α is a factor that determines the relative
weighting of P and R.

The graph in fig. 3.4 gives the precision, recall, and F measure for the grammar
evolved from each corpus, when tested on the test set of the same corpus.

Figure 2. Precision, Recall, and F measure on the test corpora

3.5. Cross Validation. Testing the evolved grammar on a held-out test set of the
original corpus is an important evaluation tool. However, another, perhaps more
important, question is how well the grammar evolved by training from a particular
corpus can parse an entirely unrelated corpus. We perform cross-validation by
testing the precision and recall of each grammar on each of the other corpora, and
calculating the F measure.

In fig. 3.5, the rows correspond to the grammar evolved from the labelled corpus,
the columns signify on which corpus the grammar was cross-validated, and the value
itself is the F measure for that particular combination.

8 MARGARET AYCINENA MYKEL J. KOCHENDERFER DAVID CARL MULFORD

Figure 3. Cross-validation F measure

To get a better picture of the results, we average the F measure for a given
grammar over all the corpora on which it was validated. This gives the graph in
fig. 3.5, in which the x-axis is the grammar, and the y-axis is the mean F measure.

Figure 4. Precision, Recall, and F measure on the test corpora

From the testing and cross validation results, it appears that the approach has
been quite effective.

4. Conclusions and Further Work

Here is a sample grammar produced when using negative examples:

S → P J|P N|T N|T J|V J|J J|R J|N J|P S|V S|N S|J S|R S|T S|S N

This grammar differs from the “accept-all” grammar in that it only allows you
to append one symbol, a noun. For most English sentences, you can append a noun
and still have a string of POS tags that could be a valid sentence. For example, if
the sentence ends with a noun, the new noun becomes part of a compound noun. If
the sentence ends with an adjective, the appended noun becomes the object of that
adjective. If the sentence ends in a verb, the noun becomes the object of that verb.
The genetic algorithm has caught onto that fact in the final rule. It has found a
subset of all bigrams that are the most common in English. The grammar accepts
any string of words that ends with one of those bigrams, optionally followed by
any number of nouns. This, unfortunately, gives a grammar that is very capable of

EVOLUTIONARY GRAMMAR INDUCTION 9

detecting whether a sentence is valid in English, but it has not learned much English
structure. The grammar has the property that it accepts too many sentences that
are not valid English, but still rejects most non-English sentences.

We have tried generating synthetic corpora using a small English grammar. One
grammar we tried was:

S → NP VP|N VP|NP V|N V

NP → N N|T N

VP → V NP|V N

For this corpus, the algorithm output the following grammar:

S → 6 V|S 6|N V|S N

6 → T N|N N

This is actually a somewhat reasonable grammar. The unnamed non-terminal
6 could be interpreted as a noun phrase. However, for more complicated synthetic
grammars, the algorithm again output grammars only using the start symbol.

We have explored several approaches to coax the algorithm into producing better
grammars. If you forbid the start symbol to expand to itself, the algorithm just
finds a grammar using S and one other non-terminal. Increasing the penalty for
parsing negative examples does not really help: the original grammar already did
not parse many negative examples.

A possible way to fix this would be to include the probability of parses. Since
the above grammar only uses one non-terminal, on average each rule has a low
probability. Thus, the trees assigned to the corpus would have low probabilities as
well. A grammar that uses the proper phrasal units would be able to assign higher
probabilities to each rule, and the algorithm might discover such a grammar.

However, it is still possible that English grammar is too complex to be learned
from a corpus of words. When parents teach their children language, they provide
subtle clues as to the structure of English. These clues could take the form of
the rhythm of speech, as speakers might put space between their pronunciation of
phrasal units (i.e. separating the subject, verb, and object from each other).

References

1. E. M. Gold, Language identification in the limit, Information and Control 10 (1978), 447–474.

2. D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning, Addison-

Wesley, Boston, 1989.
3. J. H. Holland, Adaptation in natural and artificial systems, University of Michigan Press, Ann

Arbor, 1975.

4. B. Keller and R. Lutz, Evolving stochastic context-free grammars from examples using a min-
imum description length principle, Workshop on Automata Induction Grammatical Inference

and Language Acquisition, ICML-97 (1997).
5. C. Manning and H. Schutze, Foundations of statistical natural language processing, The MIT

Press, Cambridge, 1999.

Stanford University, Stanford, CA 94305

E-mail addresses at cs dot stanford dot edu��: dmulford, aycinena, mykel

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004
Edited by Foxit PDF Editor

