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Abstract

Recently, discriminative training (DT) methods have achieved tremendous progress in automatic speech recognition
(ASR). In this survey article, all mainstream DT methods in speech recognition are reviewed from both theoretical and
practical perspectives. From the theoretical aspect, many effective discriminative learning criteria in ASR are first intro-
duced and then a unifying view is presented to elucidate the relationship among these popular DT criteria originally pro-
posed from different viewpoints. Next, some key optimization methods used to optimize these criteria are summarized and
their convergence properties are discussed. Moreover, as some recent advances, a novel discriminative learning framework
is introduced as a general scheme to formulate discriminative training of HMMs for ASR, from which a variety of new DT
methods can be developed. In addition, some important implementation issues regarding how to conduct DT for large
vocabulary ASR are also discussed from a more practical aspect, such as efficient implementation of discriminative train-
ing on word graphs and effective optimization of complex DT objective functions in high-dimensionality space, and so on.
Finally, this paper is summarized and concluded with some possible future research directions for this area. As a technical
survey, all DT techniques and ideas are reviewed and discussed in this paper from high level without involving too much
technical detail and experimental result.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, automatic speech recognition (ASR) has achieved huge success and its perfor-
mance has been significantly improved in a variety of real-world applications, from simple digit recognition to
large vocabulary broadcast news transcription, from reading style voice dictation to spontaneous dialogue sys-
tems, etc. These impressive advances are mainly attributed to many powerful statistical modeling techniques
which have been broadly accepted in ASR for representing real data, such as speech signals and spoken lan-
guage documents collected from real-world applications. As it is well known, the most successful modeling
approach in ASR is to use hidden Markov models (HMMs) as acoustic models for sub-word (such as pho-
nemes, syllables, etc.) or whole-word speech units and to use Markov chain model (a.k.a. n-gram model) as
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language model for sentences or word sequences in text documents. In these methods, it is essential to effec-
tively learn all model parameters, including those of HMMs and n-gram models, from a large amount of train-
ing data according to certain training criteria. It has been shown that success of this data-driven modeling
approach highly depends on the goodness of estimated models and the underlying modeling technique plays
an critical role in the final system performance.

As we know, various statistical learning approaches have been extensively studied in the field of machine
learning (Jebara, 2002; Vapnik, 1998). Generally speaking, there exist two distinct categories of learning algo-
rithms in machine learning for building an effective pattern classifier, namely generative learning and discrim-
inative learning. The generative learning scheme aims to estimate probability distribution of data for each
class using density estimation methods. To make the estimation problem more feasible, the so-called paramet-
ric modeling approach (Jiang et al., 1999) has been widely adopted, where it is assumed that unknown prob-
ability distributions belong to some computationally tractable function families, such as the exponential
family (Brown, 1986) or a finite mixture of exponential family distributions. In this way, the difficult density
estimation problem turns into a more tractable parameter estimation problem. Conventionally, all unknown
parameters of the presumed probability distributions are estimated from all available training samples accord-
ing to the well-known maximum likelihood (ML) approach. At last, the estimated models are used for clas-
sification based on the Bayes decision rule (a.k.a. maximum a posterior decision rule) from statistical decision
theory. It has been proven that the generative learning method leads to the optimal classifier as long as the
presumed probability models indeed represent the true distribution of data (Nadas, 1983; Nadas et al.,
1988). The major advantage of generative learning is that it is relatively easy to exploit inherent dependency
or various relationship of data by imposing all kinds of structure constraints in generative learning, such as
graphical models (Jordan, 2004). More importantly, many efficient learning algorithms, such as the Expecta-
tion—Maximization (EM) algorithm (Dempster et al., 1977; Neal and Hinton, 1998), are available for estimat-
ing a variety of generative models, even for many rather complicated models. As a result, the generative
learning scheme has become a very popular data modeling approach for classification and regression in many
practical applications. In ASR, the generative learning strategy has been extensively explored for estimating
various types of HMMs, including discrete density HMMs (DDHMMs) and Gaussian mixture continuous
density HMMs (CDHMMs), using the Baum—Welch (BW) algorithm (Baum et al., 1970), which is basically
derived based on the Expectation—-Maximization (EM) algorithm (Dempster et al., 1977) for maximum like-
lihood estimation (MLE) of HMM:s.

On the other hand, the discriminative learning scheme has recently gained tremendous popularity in
machine learning since it makes no explicit attempt to model the underlying distribution of data and instead
it directly optimizes a mapping function from the input data samples to the desired output labels. Therefore, in
discriminative learning methods, only the decision boundary is adjusted without forming a data generator in
the entire feature space. In a discriminative learning scheme, the mapping function can be estimated using
some criteria that are directly relevant to the ultimate classification and regression purpose, such as condi-
tional maximum likelihood (CML) estimation (Jebara and Pentland, 1998) (a.k.a. maximum mutual informa-
tion estimation (MMIE; Bahl et al., 1986; Woodland and Povey, 2002) in speech community), empirical risk
minimization (ERM; Meir, 1995) and large margin estimation (LME; Scholkopf and Smola, 2002; Smola
et al., 2000). Some representative discriminative models include logistic regression, regularization networks,
support vector machines (SVM) and traditional neural networks. Particularly, based on the generalization
bounds in statistical learning theory (Vapnik, 1998), large margin classifiers (Smola et al., 2000) have been
attracting considerable attention in the field. However, there are still some limitations in the discriminative
learning scheme. For example, it is not straightforward to deal with latent variables and exploit the underlying
structure of data in discriminative models. Moreover, computational complexity is considerably higher in dis-
criminative training since it requires simultaneous consideration of data from all classes. Particularly for ASR,
many pure discriminative models, such as SVM, neural networks, logistic regression, have also been investi-
gated for speech recognition but they fail to properly cope with the dynamic and variable-size nature of speech
signals. Hence, no standalone discriminative model can yield comparable performance as generative models,
i.e., HMMs, on any significant ASR task. The pure discriminative models are only used as a complementary
component in HMM-based ASR systems, e.g., using neural networks as a front-end feature transformation
module and SVM as a post-processing stage to combine scores.
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More recently, an interesting topic has emerged in machine learning by combining both generative and dis-
criminative learning schemes since they are regarded to be largely complementary, namely discriminative
learning of generative models, such as (Altun et al., 2003; Jaakkola and Haussler, 1998; Jaakkola et al.,
1999; Taskar et al., 2003). In a more general sense, discriminative training of generative models may include
any alternative estimation methods for traditional generative models based on a different training criterion
rather than MLE. This can be viewed as a general framework to learn generative models based on some dis-
criminative criteria that are more consistent with the final pattern recognition and regression purpose. How-
ever, the existing generative learning algorithms, such as the EM algorithm, cannot be directly extended to
optimize these alternative discriminative criteria. Over the past decade, considerable research efforts have been
devoted to develop effective algorithms to be able to learn generative models discriminatively in the fields of
ASR and machine learning. In this survey article, these research efforts will be comprehensively reviewed from
the perspective of ASR, centering on discriminative learning of various types of HMMs. This work is also
applicable to other generative models in different pattern classification areas and some of them may also be
relevant to research work independently developed in machine learning.

In ASR, discriminative learning of HMMs has been extensively studied for several decades. Most research
work in this category will be the main focus in this survey article. Since the middle of the 1980s, some IBM
researchers (Nadas et al., 1988; Nadas, 1983) had started to theoretically study an alternative training method
for HMMs, which was believed to be more pertinent to speech recognition task than the conventional MLE
method. This method was initially posed from the perspective of information theory and was accordingly
named as maximum mutual information estimation (MMIE; Bahl et al., 1986). It was later shown that under
some minor conditions MMIE is in fact identical to the conditional maximum likelihood estimation (CMLE),
a technique already known earlier. In Nadas et al. (1988), it was theoretically proved that the CMLE/MMIE
method is superior to MLE when modeling assumptions are incorrect, which is obviously true for any prac-
tical application. Shortly after that, the IBM researchers had used a gradient descent method to implement
CMLE/MMIE and shown that CMLE/MMIE based training produces less recognition errors than MLE
in a small isolated word recognition task (Bahl et al., 1986; Brown, 1987). Following that, in Gopalakrishnan
et al. (1991), they had continued to investigate a new optimization method based on growth transformation
(GT), i.e., the extended Baum—Welch (EBW) algorithm, to implement CMLE/MMIE for DDHMMs in ASR.
Later on, Normandin et al. (1994) had extended the EBW/GT method to CMLE/MMIE of Gaussian mixture
CDHMMs and this method was used to successfully build a high-performance speaker-independent connected
digit string recognition system, which was considered as an important ASR benchmark at that time. In the
meantime, from early 1990s (Juang and Katagiri, 1992; Juang et al., 1997; Katagiri et al., 1998), some former
Bell Labs researchers have also started to investigate a different discriminative training method for HMMs in
ASR, which was named as minimum classification error (MCE) method. The MCE method aims to minimize
an empirical error rate in training data which can be approximated by a smoothed and differentiable objective
function. In Juang and Katagiri (1992), Juang et al. (1997), Katagiri et al. (1998), a generalized probabilistic
descent (GPD) method has been proposed to optimize the MCE objective function, which is known as the
MCE/GPD method. Similarly, the MCE/GPD method has also been shown to significantly outperform the
MLE method in the connected digit recognition task (Chou et al., 1992; Chou et al., 1993). However, after
that, discriminative training methods, including both CMLE/MMIE and MCE, failed to yield any significant
improvement over the traditional MLE method except only on these relatively simple and small ASR tasks
(Chou et al., 1993; Normandin et al., 1994). On the other hand, due to the effectiveness of the EM algorithm,
the conventional MLE method has been successfully extended to the estimation of very large scale HMM
models for large vocabulary ASR systems. The situation had not changed until very recently when Cambridge
University researchers (Povey and Woodland, 2002; Woodland and Povey, 2002) first experimentally demon-
strated that the MMIE/CMLE-based discriminative training can significantly improve well-trained MLE
models even in the most challenging large vocabulary ASR tasks. In Woodland and Povey (2002), extensive
experiments conducted in state-of-the-art ASR systems provide many useful insights to understand behaviors
of discriminative training on large scale models and also give some methods to streamline practical implemen-
tation issues which are critically important for a successful implementation of discriminative training for large
scale ASR systems. Since then, more and more promising results have been reported on discriminative training
of HMMs for ASR. For example, some researchers have also reported significant gains to apply MCE-based



592 H. Jiang | Computer Speech and Language 24 (2010) 589-608

discriminative training to other large vocabulary ASR tasks, such as Jiang et al. (2005), Macherey et al. (2005),
McDermott and Hazen (2004), McDermott et al. (2007). Nowadays, discriminative training techniques have
been considered as the major driving force to bring down ASR errors from one level to another in almost all
different kinds of applications and tasks.

In this survey article, we shall mainly review most relevant work in the literature regarding discriminative
training of HMMs for speech recognition and highlight the most important theoretical points which are fun-
damental in discriminative learning of generative models and avoid technical and experimental details as much
as possible. The remainder of this article is organized as follows. In Section 2, some important discriminative
learning criteria for ASR are introduced, including MMIE/CMLE, MCE, minimum phone (word) error
(MPE/MWE) and large margin estimation (LME), and a unifying view based on margin is presented to eluci-
date the relationship among these criteria. Next, in Section 3, several key optimization methods widely used in
ASR are briefly reviewed. Then, as some recent advances, the so-called Approximation-optiMization (AM)
method, is presented as a new general framework to solve discriminative training of HMMs in ASR. Under
this general framework, several newly-proposed methods are also introduced, such as convex optimization
and constrained line search and so on. In Section 5, some more practical issues regarding how to implement
DT for large vocabulary continuous speech recognition (LVCSR) are discussed, particularly how to implement
DT on word graphs. Finally, in Section 6, this article is concluded with some possible future research directions.

In another recent tutorial article on DT (He et al., 2008), the authors have reviewed recent research
advances of DT in ASR mainly from aspect of discriminative criterion. It is shown that various types of
DT criteria, including MMIE, MCE and MPE/MWE, can lead to the same form of objective functions,
i.e., rational-function form. As a result, all of these DT criteria can be optimized using the same optimization
method based on growth transformation. In this article, we treat both discriminative criteria and optimization
methods in a more balanced way and present a different unifying view to survey all relevant DT works initially
proposed from different contexts. As a technical survey, all technical methods and ideas are reviewed and dis-
cussed from high level without involving too much technical detail and experimental result, for which readers
may refer to original papers based on a comprehensive reference list compiled at the end of this article.

2. Discriminative training criteria for ASR

Before we start to introduce discriminative training criteria, let’s first clarify all necessary notations.
Assume we view a sentence or word sequence S and its associated acoustic observation X (usually, a feature
vector sequence) as a jointly distributed random variable pair (S,X). We denote the joint probability distri-
bution as p(S,X), which is normally represented by some pre-selected statistical models. In ASR, given any
speech utterance X, an optimal speech recognizer chooses the sentence S* which maximizes the posterior prob-
ability as output based on the plug-in MAP decision rule (Jiang et al., 1999) as follows:

§* = argmax p(S|X) = argmax p(S) - p(X|S) = argmax p(S) - p(X%s), (1)

where Ag denotes the composite HMM representing sentence or word sequence S. In this article, we are only
interested in estimating HMM Ay and assume language model used to calculate p(S) is fixed. For convenience,
we use A4 to denote the set of all HMM parameters that needs to be estimated in discriminative training (DT).

In supervised learning, given a set of training data, denoted as &, consisting of many utterances as
2 ={X,X2,---,Xr}, we usually know the true transcriptions for all utterances in &, denoted as
£ =1{8,8,,---,Sr}. For notational convenience, we use the upper-case letter S, to represent the true tran-
scription of each utterance X, and use the lower-case letter s, to denote a variable which may take all possible
labels in a hypothesis space.

In the conventional maximum likelihood estimation (MLE), the HMM parameter set, A, is estimated by
maximizing probability of training data & given their correct transcriptions .. Under the i.i.d. assumption,
the MLE criterion can be represented as

T
Ay = arg max Pr(2|%,A4) = arg max H pA(XS)), (2)
t=1
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where p,(X,|S,) denotes probability of X, given its correct transcript S,, calculated with model A. For nota-
tional brevity, we will drop the subscript A hereafter.

As we know, the ML estimation of HMMs in Eq. (2) can be iteratively solved with the EM algorithm in
Dempster et al. (1977), which leads to the well-known Baum-Welch (BW) algorithm (Baum et al., 1970).

2.1. Maximum mutual information estimation ( MMIE)

In speech recognition, the first discriminative training criterion was derived from the perspective of infor-
mation theory, which was named as maximum mutual information estimation (MMIE) accordingly (Bahl
et al., 1986; Brown, 1987). The goal in MMIE is to maximize the mutual information between training data
2 and their corresponding labels .Z to establish the tightest possible relation (in a probabilistic sense) between
training data and their corresponding models. However, as shown in Nadas et al. (1988), when the mutual
information is calculated based on the sampling distribution of training data, MMIE is actually equivalent
to another well-known training criterion, namely conditional maximum likelihood estimation (CMLE). In
CMLE, the goal is to maximize the conditional probability of training labels % given the training data 2.
Under the i.i.d. assumption, the CMLE criterion can be represented as

p(X.IS:)
S,P(St) p(Xils))’

T
AcmL = arg max Pr(£|2) = arg max H p(S|X,) = arg max H 5 (3)

t=1

where summation in denominator is conducted over all possible labels, s;, for each X;. Comparing with the
MLE criterion in Eq. (2), it is clear that CMLE is more consistent with the MAP decision rule in Eq. (1) used
in the final recognition, where each utterance is classified according to the same conditional probability. After
taking logarithm on the above CMLE objective function, we derive the MMIE criterion widely used in speech
recognition as

)

* KX
Apr = argmax Z log [ PE(S,) - P (X.]S)) ]

ZA,P (s0) - p(Xilso) |7

where an exponential smoothing factor x(x > 0) has been explicitly added to smooth the original MMIE
objective function for effective optimization, see discussions in Section 3.4.

2.2. Minimum classification error ( MCE)

The second discriminative training criterion in speech recognition, namely minimum classification error
(MCE) estimation, has been developed to explicitly minimize the total error counts in training data (Juang
et al., 1997; Katagiri et al., 1998). The key idea of MCE is to approximate the empirical classification errors
in training data as a smoothed and differentiable objective function. In the classical MCE formulation, for
each training data X, in &, the so-called mis-classification measure is first constructed as follows:

3 pis) -p"(XAs,)], (5)

5i7#S;

d,(X,, /1) = — IOg LU’\(X1|S1) ‘pK(Sz)] + IOg

where a similar smoothing factor k(x > 0) is also introduced here, and the above summation is taken over all
competing hypotheses s,(s,#S,) for X,. In the above, log-sum is introduced as soft-max to determine the most
competing hypothesis for X, from all competing hypotheses. With « properly set, we have d,(X,, 4) < 0if X, is
correctly recognized by A and d,(X,, A) > 0 otherwise. Traditionally, all possible competing hypotheses are
given as an N-best list (Chou et al., 1992; Juang et al., 1997) so that the summation w.r.t. s, is taken over
the N-best list. Recently, it has been extended to represent all competing hypotheses as a word graph. In this
case, s; should be summed over all possible paths in the word graph.

Next, the above mis-classification measure is plugged into a sigmoid function to compute the so-called the
smoothed error count for X, as follows (Juang and Katagiri, 1992):
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1

Wd (X0 ) = T awn ©

Finally, MCE aims to minimize the total smoothed error counts summed over the whole training set.
Therefore, the MCE criterion can be represented as follows:

Ayice = argmln Z 1.(d.(X,, A)). (7)

As shown in He et al. (2008), if we explicitly substitute the mis-classification measure in Eq. (5) into the
sigmoid function in Eq. (6), after some manipulations, we can draw the MCE criterion into another equivalent
form as follows:

o Max ) - P*(Xi|S))
e —angm 3 PR ®

2.3. Minimum phone (word) error (MPEIMWE)

As we know, the classification errors to be minimized in the above MCE formulation correspond to speech
recognition errors measured in sentence level, i.e., string errors. However, in large vocabulary continuous
speech recognition (LVCSR), recognition performance is normally measured in sub-string levels, e.g., word
error rate (WER). Motivated by this, the work in Povey and Woodland (2002) has modified the MCE criterion
to reflect sub-string errors in the following way:

Zs, Pe(se) - P (Xilse) - A(Siys0)
Zs, (i) - pr(Xils:) 7

where A(S,, s,) is called raw accuracy count, which is introduced to measure sub-string accuracy between two
sentences S; and s,. For simplicity, 4(S,,s;) is pre-computed between any S, and s, and thus viewed as a con-
stant coefficient in the above DT criterion. Unlike the MCE criterion in Eq. (8) which only considers the per-
fect string in numerators, a summation is conducted in numerators of the new objective function to consider
all possible string labels, each of which is weighted by raw accuracy count. In this way, the new objective func-
tion includes the contribution from not only the perfect string but also many partially correct string labels. The
raw accuracy count A(S,,s;) can be calculated in several different sub-string levels. If it is computed in phone
level, it represents phoneme accuracy between two sentences S; and s,. The resultant discriminative training
criterion in Eq. (9) is called minimum phone error (MPE) estimation. Similarly, if A(S;,s,) is calculated in word
level, it represents word accuracy between two sentences S, and s,. The corresponding criterion in Eq. (9) is
called minimum word error (MWE) estimation. As a special case, if 4(S,,s,) is calculated in sentence level,
ie., A(S;s;) = 0(S, —s;), where o(-) stands for the Kronecker delta function, the criterion degenerates to
the original MCE criterion in Eq. (8).

However, it is not trivial to calculate raw accuracy A(S,, s,) in sub-string levels. Strictly speaking, it needs to
use dynamic programing to compute the Levenshtein edit distance between S, and s, to account for substitu-
tion, deletion and insertion errors. Obviously, this kind of edit distances cannot be directly formulated in an
objective function for optimization, except from simple N-best lists. Alternatively, as in Povey and Woodland
(2002), A(S,, s;) is normally calculated based on some simple heuristic measures which can be computed locally
without dynamic programming; refer to Povey and Woodland (2002) for details.

AMPE = argmax Z 9)

2.4. Large margin estimation ( LME)

More recently, a new discriminative training criterion has been proposed for speech recognition based on
the principle of large margin classifiers, which is called large margin estimation (LME) criterion (Jiang, 2004;
Jiang et al., 2006; Li and Jiang, 2007; Liu et al., 2005). LME aims to estimate HMM parameters based on the
principle of maximizing minimum margin of training data towards better generalization capability and more
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robustness in classifier design. In LME, we first define a separation margin for each training data, X,, as
follows:

d(X,|4) = log[p(S,) - pX,|S)] ~ max_logp(s) - p(X.s.)], (10)
where max is taken over all competing hypotheses s,(s,#S,), which may be given as either an N-best list or a
word graph. Similar to the mis-classification measure in MCE, we may use soft-max in the above margin def-
inition, which results in a variant margin definition as follows:

d(X,|4) =log[p*(S,) - p*(X.[S:)] — log [ Z Pi(s) 'pK(tht)‘| . (11)
5 =S

Obviously, d(X;|4) > 0 if and only if X; is correctly recognized by the model set A.

According to the statistical learning theory (Vapnik, 1998), the generalization error rate of a classifier in
new test sets is theoretically bounded by a quantity related to margin. A large margin classifier usually yields
lower error rate in new test sets and it shows more robustness and better generalization capability. Motivated
by the large margin principle, even for those utterances in the training set with positive margin, we may still
want to maximize their minimum margin to build an HMM-based large margin classifier.

The idea of large margin leads to estimating the HMM models A based on the criterion of maximizing the
minimum margin of all training data as follows:

ALme = argmax min d(X,|A4). (12)

If we use the margin definition in Eq. (11), the LME criterion can be represented as follows:

pK(St) 'PK(Xt|Sz)
Zs,,s, = S/p"(s,) P (X ]s,)
The above LME criterion is derived under the assumption that all training data is perfectly recognized by

the current models. In case of training errors, the idea of soft-margin SVM can be applied to extend the LME
criterion to consider training errors, such as the soft LME method in Jiang and Li (2007).

(13)

Apmg = argmax min In
A t=1-T

2.5. Discussions: DT criteria

After a quick investigation on their objective function formes, it is clear that all the above-mentioned dis-
criminative training criteria are highly related to each other. In Macherey et al. (2005), Schluter (2000), several
discriminative training (DT) criteria, including MMIE, MCE, MPE/MWE, are formulated in a general func-
tion form, which involves only different mapping and gain functions for different DT criteria. In He et al.
(2008), it is shown that the objective functions derived from these discriminative criteria can all be converted
into a general fraction form of two positive-valued functions, which provides a clear evidence that these dif-
ferent discriminative criteria can be optimized using the same optimization algorithm, such as the EBW
method (to be discussed in Section 3.3).

In this section, we will propose yet another unifying view for all these discriminative training criteria, center-
ing on the concept of margin. As in Eq. (11), assume that we adopt the definition of margin as the difference of
log likelihood of the correct label versus that of the most competing hypothesis, which is selected over a hypoth-
esis space based on softmax using log-sum. Given any training data X, its margin can be computed as follows:

si €My

d(X,|4) =log[p"(S,) - p*(X.[S.)] — log lz pi(s) 'P’C(ert)] ; (14)

where s, is summed over a particular hypothesis space, denoted as .#,.
Then, all discriminative objective functions can be represented as a general function of margins of all train-
ing samples in the training set, 9 = {X,,---,Xr}. That is,

For(4) = f(d(X1|4),d(X:]4), ..., d(X]4)). (15)
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For the MMIE or CMLE criterion in Section 2.1, the function f(-) is a sum function. The objective function
for MMIE or CMLE can be represented as

Fai(4) = 7 d(x,]4), (16)

where margin d(X;|A) is calculated as in Eq. (14) with s, summed over all possible hypotheses (including the
correct label S,).

For the LME criterion in Section 2.4, the function f(-) is a min function. The LME objective function can
be written as

Fiue(4) = min_d(x,|4), (17)

where margin d(X;|A) is still calculated as in Eq. (14) but with s, summed only over all competing hypotheses
(excluding the correct label S,).

For the MCE criterion in Section 2.2, the function f(-) is a sum-exp function. The MCE objective function
can be expressed as

.
Fuce(4) =) exp[d(X/|A)], (18)
=1
where margin d(X;|A) is calculated in the same way as MMIE, i.e., s, is summed over all possible hypotheses
(including the correct label).
For the MPE/MWE criterion in Section 2.3, the function f(-) is still a sum-exp function but margin needs to
be calculated in a slightly different way to incorporate all partially correct string labels for its positive term.
Therefore, the MPE/MWE objective function can be represented as follows:

T

Fupe(4) = > exp[d'(X,|4)], (19)

t=1

with the variant margin d'(X,|A1) calculated as

Se€M S €My

d'(X,|4) = log Z Pi(se) - po(Xilse) ~A(S,,s,)] — log [Z Pi(s) ~p"(X,|s,)1, (20)

where A4(S;,s,) denotes the raw accuracy function as defined in Section 2.3, and the hypothesis space .#, con-
sists of all possible string hypotheses, including correct transcript S;.

3. Optimization methods for discriminative training in ASR

In the preceding section, we have briefly reviewed some popular discriminative training criteria for HMM-
based speech recognition. In this part, we will summarize some important optimization methods proposed to
optimize the objective functions constructed based on these criteria. As we have observed in recent work
(McDermott et al., 2007; Schluter, 2000; Woodland and Povey, 2002), an effective optimization algorithm
plays a crucial role in discriminative training for ASR. Especially in large vocabulary ASR, discriminative
training methods need to deal with very large HMMs, which may result in optimization problems involving
several millions of free variables. In practice, it is a huge challenge to solve this kind of large scale optimization
problem efficiently and effectively and many important issues must be addressed appropriately, e.g., how to
accelerate convergence speed and how to avoid bad shallow local optimum points and so on.

3.1. Gradient descent (GD)
In early discriminative training work for ASR (Bahl et al., 1986; Brown, 1987; Chou et al., 1992; Juang and

Katagiri, 1992; Juang et al., 1997), it normally relies on a general gradient descent method to optimize the DT
objective functions. The gradient descent method is simple and general and can be flexibly applied to any
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differential objective functions. Given any objective function F(A), the general form of gradient descent search
can be represented as the following iterative updating formula along the gradient direction:

AT = A0 e TF(A)] o, (21)

where ¢, is step size at n-th iteration, which should gradually decrease as iterations proceed. The above gra-
dient descent search algorithm can be implemented in either batch or online mode. In batch mode, for each
iteration, we normally accumulate gradient at A™ over all training samples and update model parameters only
once. The advantage of batch mode is that it is easy to parallelize optimization over multiple processors. In
online mode, gradient is calculated for each single training sample and model parameters are immediately up-
dated based on the gradient. The online gradient descent can automatically exploit data correlation, allowing
learning to proceed quickly. The online method is also called probabilistic descent, which is a special case of
stochastic approximation method. However, the online method is relatively slow to process a large amount of
training data since it is hard to parallelize. In addition, the so-called ‘semi-batch’ mode is proposed as a com-
promise, where the model is updated every n training samples.

The major drawback of the gradient descent method lies in its very slow convergence speed since it only
explores the first-order derivative, i.e., gradient, during the search process for the optimum. A uniform step
size €, in Eq. (21) may not be appropriate for different model parameters. To ensure convergence for every
parameter, an extremely small step size may have to be used in Eq. (21), which in turn leads to very slow con-
vergence overall.

3.2. Quickprop, Rprop and Quasi—Newton methods

Obviously, we need to apply different step sizes to different model parameters to achieve better convergence
speed. The second-order derivatives of the objective function F(A), i.e., the so-called Hessian matrix
H = V*F(A), provide the important information for properly setting different step sizes for different variables
of the objective function.

In the traditional Newton’s method, if the objective function can be approximated by a quadratic function
and its Hessian matrix is positive definite, the optimum point, denoted as A, can be reached from any starting
point, A, in one single step along the gradient direction and the necessary step size can be calculated pre-
cisely based on the Hessian matrix:

A=A g VEF(A)] _yom- (22)

However, in practice there is no guarantee that the Hessian matrix is positive definite and also the size of the
Hessian, i.e., the square of the number of model parameters, may prevent us from actually computing the
Hessian.

In the literature, there exist many optimization methods which aim to approximate the Hessian matrix in
various ways, such as Quasi—-Newton, Quickprop, Rprop, BFGS and so on. The key idea behind these meth-
ods is to use a diagonal (or block diagonal) approximation of the Hessian matrix that can be efficiently
updated over iterations. In this section, we briefly introduce Quickprop and Rprop since they both have been
successfully applied to ASR.

The Quickprop method was initially proposed to train neural networks. In Quickprop, the Hessian is
approximated by a diagonal matrix. The i-th diagonal element of Hessian at n-th iteration is approximately
computed as finite difference of gradient as follows:

X 62F(/1(”>) aF(a/%m) _ aF(/:;—n)
Hy = V;F(4) = Y ~ A1 ’ (23)

1

n—1

where A)Vl(. ) denotes the update step size of i-th parameter, 4;, at previous iteration n — 1. After substituting
the diagonal Hessian approximation of Eq. (23) into the Newton’s updating formula in Eq. (22), we derive the
Quickprop updating formula for i-th parameter, /;, as

A =20 — nA" VR, (24)

1
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where the step size for 4, i.e., Aif")
Ail(-nil)
- OF(A™)  aF(At-D)”
R o
Moreover, Quickprop also addresses the positive definiteness of the approximated Hessian by examining
the sign of gradient w.r.t. each parameter for successive iterations, see McDermott et al. (2007) for details.
Similarly, Rprop also uses different step sizes to update different model parameters as in Eq. (24). In con-

trast, the updating step size in Rprop is determined based on only the sign of derivative, not the magnitude:

, 1s calculated based on the approximated Hessian matrix as follows:

A (25)

(m p F(A")
=4 i ——=>0
7 (n)
ALY = n) .o OF(A®
! +Af T —(% ) <0
0 otherwise,

(n

oF (A1) ar(a™)

where the magnitude of step size, A ), is different for each parameter and evolves as follows:

(n—1) .
0t if —5; o >0
(n) P (n-1Y\ 5 (n)
N = o1y e OF(A0TDY) oF(A0))
Al otherwise,

1

with 0 <~ <1<y,
3.3. Extended Baum-Welch (EBW)

The most popular optimization method used for discriminative training of HMMs in ASR is the so-called
extended Baum-Welch (EBW) method. The EBW algorithm was initially derived based on the concept of growth
transformation in Baum and Eagon (1967), Baum and Sell (1968). As shown in Baum and Eagon (1967), Baum
and Sell (1968), the so-called Baum—Eagon inequality can be used to construct a transformation which always
increases the value of an arbitrary homogeneous polynomial function. As an alternative to the EM algorithm,
this growth transformation can be used to estimate some discrete statistical models for MLE. In Gopalakrishnan
etal. (1991), the Baum—Eagon inequality has been extended to any rational function, from which a growth trans-
formation can be constructed for the MMIE objective function of discrete density HMMs (DDHMMs). Itis also
proved that the transformation can monotonically increase the MMIE objective function of DDHMMs under
some conditions. This method is named as the EBW algorithm since its updating formula is reminiscent of the
normal Baum-Welch algorithm for the MLE training. In Normandin et al. (1994), based on discrete approxima-
tion of the Gaussian distribution, the EBW method has been extended to Gaussian mixture continuous density
HMMs (CDHMMs) without a rigid proof and the updating formula for MMIE training of Gaussian mixture
CDHMMs has been derived accordingly. Since then, the derived EBW method has been widely used for discrim-
inative training of HMM s in ASR (Kapadia, 1998; Povey, 2004; Valtchev, 1995). Until very recently, the work in
Axelrod etal. (2007), Gunawardana and Byrne (2001), He et al. (2008) has finally given a mathematical proof that
the derived EBW updating formula is guaranteed to strictly increase the MMIE objective function of Gaussian
mixture CDHMMs under some conditions. Furthermore, in He et al. (2008), it has also been proved that the
EBW formula can strictly increase other DT objective functions of CDHMMs, including MCE and MPE/MWE.

In the following, we briefly summarize the key results of the EBW method related to both DDHMMs and
CDHMMs. Assume that a DT objective function, F, involves some parameters of discrete statistical models,
e.g., 4; with the sum-to-one constraint ) Ay = 1and 0 < 4; < 1. The results in Gopalakrishnan et al. (1991),
He et al. (2008) shows that the following re-estimation formula for 4;;:

(n) [ BF
A (% ity 70 )
A = ) — ’ (26)
n oF
Zkiik (8(/1,-,( )vk:/l(;:) + D)
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will converge to a local optimum of F for a sufficiently large value of constant D with the guarantee that
FOY) = FOD).

On the other hand, if the DT objective function, F, involves Gaussian distributions, e.g., A" (u;, Zix) with
mean vector p; and covariance matrix 2 for all i and k, the EBW re-estimation formula can also be derived
as in He et al. (2008), Normandin et al. (1994). Moreover, a uniform EBW updating formula for all different
DT criteria is presented in He et al. (2008). In this section, for simplicity, we take the MMIE objective function
as an example to show its EBW updating formula. For other DT criteria, such as MCE, MPE/MWE, the
updating formula has a similar form with some minor modifications. As in He et al. (2008), Normandin
et al. (1994), the EBW updating formula for Gaussians based on MMIE can be derived as

ey _ O™ (%) — OF" (x) + D!

( , 27
NG ORI OEY 2
num n n n 4 n
st _ (G 0ex) — O 00c)] 4+ DI’ + Z] ey oy (28)
ik @E(um(l) _ @;iken(l) +D ik ik )

where ((1), 0(x) and O(xx’) denotes occupancy statistics, data and squared data, collected for this Gaussian
over time, and superscript num and den means statistics collected for numerators and denominators in the
MMIE objective function respectively. As proved in Axelrod et al. (2007), Gunawardana and Byrne (2001),
He et al. (2008), the updating formula is guaranteed to converge to a local optimum of the objective function
if the constant D is sufficiently large. However, an important implementation issue in EBW is how to set the
constant D. The results in Woodland and Povey (2002) suggest that different Gaussians should use different D
values for better convergence. The works in Povey and Woodland (2002), Schluter (2000), He et al. (2008) give
some good recipes to set Gaussian-specific D values for the EBW algorithm and these heuristic settings of D
normally yield good and stable convergence behavior for various DT criteria.

As a remark, the work in Axelrod et al. (2007), He et al. (2008) has also shown that the EBW updating
formula is comparable with an approximated quadratic Newtown search in terms of convergence behavior
since an approximated Hessian has been implicitly used in EBW to determine step size for each parameter
update, see Axelrod et al. (2007), He et al. (2008) for details. As a result, the EBW algorithm has achieved
a huge success in discriminative training of HMMs for speech recognition. It has been widely used to optimize
different DT criteria, including MMIE, MCE, MPE/MWE and so on.

3.4. Discussions.: optimization methods

As we have mentioned, an effective optimization method plays the key role in discriminative training of
HMMs for ASR, especially in large vocabulary ASR, where model size grows to be very large. To develop
an effective optimization algorithm, the most important issues that need to be carefully addressed include:
(i) how to accelerate convergence speed; (ii) how to avoid shallow local optimal points.

Towards good convergence in an iterative search algorithm, the key issue is how to set proper step sizes for
updating different parameters. Instead of using a uniform step size for all parameters, it is important to use
different step sizes for different parameters. The key information we need to set variant step sizes lies in sec-
ond-order derivatives, i.e., the Hessian matrix. Because of this, the algorithms which explicitly or implicitly
explore the second-order derivative information normally outperform, in terms of convergence speed, other
methods using only the first-order derivatives. For example, the EBW method yields much better convergence
performance than the simple gradient descent method. Moreover, in the EBW method, convergence speed can
be further improved by setting different D values for different parameters.

As we know, all local search optimization methods only guarantee to converge to a local optimal point. If an
objective function is highly complex and non-convex, its surface in space may be jagged and full of local optimal
points all over the place. In this case, a local search algorithm may be quickly trapped into a bad shallow opti-
mal point nearby the initial starting point. As the result, it becomes very difficult to observe any significant
improvement in discriminative training. In ASR, this problem is largely resolved by introducing an exponential
smoothing factor, k(0 < k < 1), to smooth the originally derived DT objective functions, as shown in Section
2. The effect of k (if k is sufficiently small) is to flatten the objective functions and to get rid of most shallow local
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optimal points. However, in the meantime, small x values also make the smoothed objective functions largely
deviating from the original discriminative criteria from which the objective functions are derived in the first
place. It is clear that small k values largely diminish discrepancy among all different DT objective functions dis-
cussed in Section 2.5 and make all of them have similar function surface for optimization. Another interesting
observation is that the exponential smoothing using « is actually related to the so-called deterministic annealing
technique in Rose (1998), Rao and Rose (2001), where x can be viewed as reciprocal of annealing temperature.

4. A new framework for discriminative training in ASR

In this section, we will introduce a new framework for discriminative training of HMMs in ASR based on
some recent advances in the field (Jiang and Li, 2007; Jiang, 2007; Li and Jiang, 2005, 2007; Liu et al., 2005,
2008). The key idea of this framework is to cast the discriminative learning of HMMs as a locally constrained
optimization problem and then iteratively approximate and optimize the DT objective functions within a close
neighborhood. The new framework is fairly general and can be viewed as an extension of the conventional EM
algorithm. It can be shown that some existing optimization methods, such as EBW, can be derived under this
framework in a relatively simple way. More importantly, a number of new effective DT methods can be devel-
oped under this new framework.

4.1. Discriminative training as constrained optimization

As shown in Liu et al. (2007), Liu et al. (2008), during the optimization process of a general DT objective
function, F(A), it is beneficial to impose a local constraint on model parameters A to ensure that they do not
deviate too much from its current values, i.e., A". The local constraint can be quantitatively computed based
on Kullback-Leibler divergence (KLD). Therefore, discriminative training of HMM parameters, A, can be
formulated as the following iterative constrained maximization problem:

A = arg max F(A) (29)
subject o Z(A||A™) < p, (30)

where Z(A||A™) is the KLD between A4 and A", and p > 0 is a pre-set constant to control the search range.
Apparently the constraint in Eq. (30) intuitively specifies a trust region for optimization in each iteration. As
shown in Liu et al. (2008), for some models, such as Gaussians, the KLD-based constraint in Eq. (30) can be
further relaxed as some quadratic contraints with the following form:

14— A", < p. (31)

This quadratic constraint normally makes the constrained optimization much easier to solve and in some
cases simple closed-form solutions may be derived.

As discussed in Liu et al. (2007), Liu et al. (2008), there are many reasons to justify the locality constraint
imposed in optimization. First of all, the DT objective functions, F(A), in speech recognition, is highly com-
plicated and nonlinear in nature, as discussed in Section 3.4, it is extremely difficult, if not impossible, to opti-
mize them directly. Therefore, we normally make the following assumptions: (i) all competing hypotheses
remain unchanged during optimization; (ii) all collected estimation statistics, such as state occupancies and
Gaussian kernel occupancies, remain unchanged during optimization. The imposed locality constraint ensures
these assumptions remain valid during optimization since the current model, 4™, has been used to generate all
competing hypotheses and to accumulate statistics from training data prior to optimization. In addition, the-
oretical analysis of discriminative training algorithms in Afify et al. (2005), Afify et al. (2007) also supports
using such a constraint in discriminative training.

4.2. A general Approximation-optiMization (AM) framework

Following Jiang and Li (2007), Jiang (2007), in this section, we introduce a general framework to solve the
above-mentioned constrained maximization for discriminative training of HMMs in ASR. The key idea here is
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that we first attempt to find a simpler auxiliary function to approximate the original DT function in a close
proximity of current model parameters if the original objective function is too complicated to optimize
directly. Then, the auxiliary function is optimized by using some efficient optimization algorithms. Because
of the locality constraint in Eq. (30) or Eq. (31), we can apply a variety of approximation strategies to con-
struct the auxiliary function with a simpler function form. Based on the proximity approximation, the optimal
solution found for the approximate auxiliary functions is expected to improve the original objective function
as well. Then, in next iteration, the original objective function can be similarly approximated in the close prox-
imity of this new optimal solution based on the same approximation principle. This process repeats until con-
vergence conditions are met for the original objective function. Analogous to the popular EM algorithm
(Dempster et al., 1977; Neal and Hinton, 1998), each iteration consists of two separate steps: (i) Approxima-
tion step (A-step): the original objective function is approximated by an auxiliary function in a close proximity
of current model parameters; (ii) optiMization step (M-step): the approximate auxiliary function is optimized
under the locality constraints in either Eq. (30) or Eq. (31). Analogously, we call this method as the AM algo-
rithm. It is clear that the AM algorithm is more general than the EM algorithm since the expectation (E-step)
in EM can also be viewed as a proximity approximation method. More importantly, as shown below, the AM
framework can also deal with some more complicated objective functions, such as those arising from discrim-
inative training of many statistical models with hidden (or latent) variables.

4.2.1. Approximation step (A-step)

There are many different methods to construct auxiliary function to approximate an objective function in a
close proximity. In this article, we only introduce an approximation strategy based on the Jensen’s inequality.
Readers can refer to Jiang and Li (2007), Jiang (2007) for other different approximation schemes.

As shown in Section 2.5, the DT objective functions, arising from discriminative training of statistical mod-
els, normally involve log-sum terms, which are typically difficult to deal with. Here, we consider a general strat-
egy to use the well-known Jensen’s inequality to approximate log-sum.

Assume that we have a finite number of positive-valued functions, i.e., f;(A4), for k=1,--- K. For any
fixed point Ay, we define the so-called posterior probability of kth function as
A
£1(Ag) = ~ Sfilldo)
Zk 1fk(/10)

Obviously, they satisfy the sum-to-one constraint that Zszl & (4p) = 1. According to the Jensen’s inequal-
ity, for a function F(A) that is log-sum of all f;(A), we have the following inequality held for all A given Ajy:

=In [ka(/l) =In Zik(/lo)fk(/l) > Z Ei(Ag)1

K

=3 &ldu)In i) + H(0) (32)

Al) _
£y = o)

where H(Ay) = =3k & (A9) In&(Ay) denotes entropy calculated based on the posterior probabilities of
& (Ay). Furthermore, we can easily verify that:

F(A)] 424, = O(A[A0)[ 41—y, (33)
and
oF(4) ~00(A]4o)
04 Aty h o4 A:AO' G4

The above results suggest that O(A4|4,) can be viewed as a close proximity approximation of log-sum F(A)
at A, with accuracy up to the first order. This approximation strategy is named as expectation-based approx-
imation, i.e., E-approx, in Jiang and Li (2007), Jiang (2007).

As the first example, let us consider to use E-approx to approximate log likelihood function of HMMs in
ASR, i.e., Inp(X,,S,|A4) of X, with transcription S,:
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Inp(X,,Si|4) =1In > p(X,,S,14). (35)
1

where 1 denotes all missing data in HMM, such as hidden state sequences and unknown mixture labels.
Following Eq. (32), In p(X,,S,|4) can be approximated by the following auxiliary function at a close prox-
imity of A®
2(A|A") = & [Inp(X,, S, 1|4)X,, S, A"] +H1(A<”>)

—Z Inp(X,, S, 1|4) - Pr(l|X,, S, A™) + Hy(A™). (36)

Obviously, if we use this approximation for MLE of HMMs, it results in the well-known Baum—Welch (or
EM) algorithm. Since the conditions in Egs. (32) and (33) hold, it is straightforward to prove that any increase
in 2(A]4") also means an even bigger increase in the original log likelihood function.

In the following, we will consider to use E-approx to approximate various DT objective functions of HMMs
in ASR. As discussed in Section 2.5, all DT objective functions can be viewed as a function of margins,
d(X,|A4), of all training data. Therefore, we first consider to use E-approx to approximate the margin, which
is defined as difference of log likelihood of correct model versus that of incorrect competing models. Following
the same idea in Eq. (36), log likelihood of correct model, i.e., p(X,,S,|4), can be approximated by an auxiliary
function, denoted as 2, (A|A"):

Inp(X,,S,|A) ~ 2] (A4]A™). (37)
Similarly, we can also use E-approx to approximate the log likelihood function of incorrect competing mod-
els as follows:

In > pXpslA)=In > 3" p(X,s,114) = 2, (4]4")

St€EM ¢ si€My 1
=3 Z Inp(X,s;,1|4) - Pr(1X,, s, A™) + Hy (A™), (38)
St€EM ¢
where s, is summed over a hypothesis space .#, of competing hypotheses, which may be represented as either
N-best list or word graph, and Pr(1/X,,s,, A™) denotes the posterior probability of missing data 1 based on one
competing hypothesis s,.

It can be easily shown that both 2, (A|A™) and 2, (4|A"™) are concave functions for HMMs A. If language
model scores are assumed to be constant, the decision margin of HMMs can be similarly approximated as
difference of two concave functions as follows:

d(X,|A) = 25 (A|A™) — 2, (A]A™), (39)

for any training sample X,.

4.2.1.1. LME. Therefore, based on E-approx of margin in Eq. (39), the LME objective function in Section 2.5
can be approximated as follows:

Fiye(4) = min d(X,|4) ~ Zuve (A]A") = min [27 (4]4") — 27 (4]4")], (40)

where 2y g (A]A™) denotes the auxiliary function used to approximate the original LME objective function
based on E-approx.

Obviously, min in Eq. (40) can not be directly optimized. In Jiang et al. (2006), Li et al. (2005), it is approx-
imated by soft-max based on log-sum. In Li and Jiang (2006), Li and Jiang (2007), a new variable is introduced
to convert min into some equivalent constraints in optimization.

4.2.1.2. MMIE. As in Section 2.5, the MMIE objective function can be represented as summation of margins
over all training data. Therefore, the MMIE objective function can be approximated as follows:

Fawi(4) =Y d(X/|A) ~ 2w (4]47) Z S(A]A™) Z S (A]A™), (41)

t =1 t=1

where 2y (A4[4™) denotes the auxiliary function of the MMIE objective function based on E-approx.
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4.2.1.3. MCEIMPEIMWE. As shown in Section 2.5, the MCE/MPE/MWE objective functions can be repre-
sented as an exponential summation of margins over all training data, where margin is defined in a slightly
different way with different weighting schemes over all possible hypotheses. Similarly, these objective functions
can also be approximated under the AM framework. Here, as an example, we only show how to use E-approx
to approximate the MCE objective function. Similarly, we can apply the same procedure to MPE/MWE as
well.

As in Section 2.5, the MCE objective function can be represented as an exponential sum of margins as

Fuice(A) = exp {mz exp [d(x,|/1)]}. (42)

t=1

In order to construct a simple auxiliary function for MCE, we first need to use E-approx to approximate
log-sum appearing in Eq. (42), and then use E-approx to approximate margin d(X,|4) as in Eq. (39).

First of all, we define an MCE weighting factor for each training sample X, based on a given model A™
as

PX 0 SUANL, & o p (X5, A™)
£ [P0S4 STl 4”)

Therefore, the original MCE objective function in Eq. (42), Fycg(A4), can be approximated by the following
auxiliary function:

¢, (A7) = (43)

Dnice (A|A™) = ZT: ¢, (A™) - [2](A]A™) — 27 (A4]A™)]. (44)

t=1

Comparing Eq. (44) with Eq. (41), we can see that the MCE auxiliary function, 2ycg(4|4™), has a similar
function form as the MMIE auxiliary function, 2y (A|A™). The only difference is that all training samples
contribute equally in 2y while they are weighted by ¢,(A"™) in 2ycE.

4.2.2. Optimization step ( M-step)

Under the proximity constraint in Eq. (30) or Eq. (31), the above E-approx auxiliary functions serve as
good approximation of the original DT objective function within the locality constraint. If the basic statistical
models belong to the exponential family, it is clear that the auxiliary functions have a much simpler function
form, whose optimal point can be found in a relatively simple way. Due to the proximity constraint, we expect
that the found optimal solution also improves the original DT objective function since the auxiliary functions
approaches the original DT functions with sufficient accuracy under the proximity constraint in Eq. (30) or
Eq. (31). In some situations, if we can formulate the approximated auxiliary function as a strict lower bound
of the original DT functions (as in Section 4.3), then it is guaranteed that the found optimal point of the aux-
iliary function will strictly increase the original DT objective function.

However, unlike the EM algorithm, we still encounter serious difficulties in optimizing these auxiliary func-
tions since all of them involve difference of two concave functions, i.c., 2% — 27. As a result, these auxiliary
functions are neither convex nor concave, which makes this optimization step still a huge challenge in most
cases. Of course, a variety of methods can be applied to solve this non-convex optimization problem. In
the following, we will introduce several techniques which have been successfully applied to solve this non-con-
vex optimization problem in the M-step.

4.3. Deriving EBW under the AM framework

Since most widely-used statistical models belong to the exponential family, it is easy to show that the aux-
iliary functions, 2pr, are in fact multivariate polynomial functions, but they are normally neither convex nor
concave due to the involved negative terms. An easy method to make them concave is to add one extra neg-
ative quadratic term as
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Fpr(4) = 2pr(A4|40) = D - [|4 = Aol (45)
where D is a positive constant. We denote this new auxiliary function as &pt(A4|4), i.e.,
g])']‘(/ll/lo) = QDT(AlAO) —-D- ||/1 — /10||2.

It is straightforward to show that this new auxiliary function still satisfies the tangential constraints with
Fpr at Ay, i.e., Egs. (33) and (34). Moreover, if D is large enough, &pr(4|4,) serves as a lower bound of
Fpr(A) for any A as

épr(A|4y) < Fpr(4) if D is sufficiently large. (46)

More importantly, if D is large enough, the negative quadratic term in &pr(4|4,) compensates for all posi-
tive elements in 2pt(A4|4p), making &pr(4|4y) a strict concave function. If &pr(4|4y) is concave, its global
maximal point can be found by making its derivatives vanish as follows:

08pr(A|40)  02pr(A]Ap)
o4 o

For HMMs or other exponential family models, the equation in Eq. (47) can be easily solved and the global
maximum of &pr, denoted as A*, can be derived with a simple closed-form solution. Once A" is derived, it
satisfies  &pr(A7|49) = Epr(Ao|dy) since A* is globally maximal. Furthermore, we have
Fpr(A") > &pr(A*|Ay) since &pr is a strict lower bound of Fpr, and Fpr(Ay) = &pr(4o|4o) based on Eq.
(33). Finally, we have Fpr(A4*) = Fpr(A4p). In other words, it is guaranteed that A* always increases the ori-
ginal objective function provided the constant D is sufficiently large.

It is interesting that solving Eq. (47) leads to the well-known EBW updating formula in Section 3.3. For
example, if we substitute the MMIE auxiliary function, 2ym;, of Gaussian mixture CDHMMs into Eq.
(47), we will derive the same updating formula for mean vectors and covariance matrices as in Eqs. (27)
and (28). Obviously, the discussions in this section serve as another strict mathematical proof for the conver-
gence of EBW, i.e., the EBW update formula leads to improve the original DT objective function as long as
the constant D is large enough.

As a remark, in Afify (2005), the EBW estimation formula for MMIE has also been derived based on a
similar idea of optimizing a lower bound of the MMIE objective function. The major difference is that the
lower bound in Afify (2005) is derived according to the reverse Jensen’s inequality (Jebara and Pentland,
2000).

—2D- (A — Ay) =0. (47)

4.4. Convex relaxations: LP, SDP and SOCP

As opposed to the above simple method in Section 4.3 that compensates non-convex auxiliary functions by
adding a large negative quadratic term, a variety of convex relaxation methods (Li, 2005; Li and Jiang, 2007;
Pan and Jiang, 2008; Pan, 2008; Yin and Jiang, 2007; Yin, 2007) can be used to convert the non-convex opti-
mization problem in M-step into a standard convex optimization problem, such as linear programming (LP),
Quadratic programming (QP), second-order cone programming (SOCP) and semi-definite programming
(SDP), so that some standard convex optimization algorithms can be applied to optimize the relaxed auxiliary
functions under the proximity constraint in Egs. (30) or (31). As we know, any local optimal point is always
globally optimal in a convex optimization problem. As a result, a convex optimization problem can be effi-
ciently solved even in a very high-dimensionality space since it never suffers from the local optimum problem.
Therefore, the advantage of using convex optimization in M-step is that optimization can be efficiently and
reliably solved even for very large scale models.

As in Pan and Jiang (2008), Pan (2008), the DT objective functions of various discrete statistical models
based on multinomial distribution, such as multinomial mixture model, Markov chain model, discrete density
HMMs and so on, can be approximated with E-approx as linear auxiliary functions. Then, in M-step, optimi-
zation of these linear auxiliary functions can be converted into a standard linear programming problem if the
sum-to-one constaint is relaxed.

As shown in Jiang and Li (2007), Li (2005), Li and Jiang (2007), the DT objective function of many Gauss-
ian-derived statistical models, such Gaussian mixture model (GMM), Gaussian mixture CDHMMs and so on,
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can be approximated with E-approx as quadratic auxiliary functions. As in Li (2005), Li and Jiang (2007), Yin
and Jiang (2007), maximization of these non-convex quadratic functions can be represented as a matrix form.
If the self-constrained matrix variables can be relaxed as positive semi-definite matrices, the original non-con-
vex maximization problem in M-step can be converted into a semi-definite program (SDP) problem. In Yin
and Jiang (2007), Yin (2007), a different approach is taken to convert maximization of indefinite quadratic
form to convex optimization, where the indefinite Hessian matrix is decomposed based on eigenvectors with
positive and negative eigenvalues. All quadratic terms related to negative eigenvalues are replace by a linear
term along with some convex constraints. In this way, the original problem to maximize indefinite quadratic
form can be relaxed into another convex optimization problem, namely second order cone programming

(SOCP).
4.5. Constrained line search (CLS)

In Liu et al. (2007), Liu et al. (2008), instead of using convex optimization, a constrained line search (CLS)
method is proposed to solve the non-convex optimization problem in M-step. In CLS, the original objective
function, Fpr(A), is first approximated by a quadratic function, 2pt(4|4,), based on E-approx. Then, for any
model parameter A, the critical point of 2pr(A4|A4p), denoted as Z, can be easily derived with a closed-form
solution by equating its derivative to zero, i.e., %QDT(/HA()) = (0. However, the found critical point A may
be: (i) a saddle point if 2pt(A4|Ay) is indefinite w.r.t. Z; (i) a local minimum if 2p1(A|Ap) is positive definite
w.r.t. 4; (iii) a local maximum if 2p1(A4|4,) is negative definite w.r.t. 2. Even though the critical point is a local
maximum, it may be located too far away from the current model so that the locality constraint in Eq. (31) is
not satisfied. In Liu et al. (2007), Liu et al. (2008), a line search method is proposed to maximize the objective
function Fpr(A4) along the direction of line segment joining the current model and the found critical point
under the locality constraint in Eq. (31). As shown in Liu et al. (2007), Liu et al. (2008), if the quadratic local-
ity constraint in Eq. (31) is used, the line search can be efficiently solved with a closed-form solution. More
specifically, the model parameter A is updated along direction d and step size € as follows:

2 =50 yed, (48)

where the search direction d is determined as line segment joining A" and 4, ie., 4 — 2", or gradient VF(A<”))
if the critical point is a saddle point, and the optimal step size € is determined based on the quadratic constraint
in Eq. (31).

5. Discriminative training for LVCSR

As mentioned before, discriminative training (DT) has been successfully applied to not only small vocab-
ulary ASR tasks but also very large scale ASR tasks (Woodland and Povey, 2002). In this section, we will
briefly discuss some practical issues to implement DT for large vocabulary continuous speech recognition
(LVCSR).

When we implement the above-mentioned discriminative training methods for LVCSR, the most important
issue is how to represent the overall hypothesis space, where a competing string s; needs to sum over in a DT
objective function. In some early work, the hypothesis space is given as a list, i.e., the so-called N-best list,
which includes the top N most competing string hypotheses for each training sample X,. In this case, we have
no technical difficulty to implement discriminative training since we just need to sum s, over all competing
hypothesis strings in this finite list. However, it has been found that N-best list is not a good way to represent
the competing hypothesis space, especially in LVCSR.

In most recent DT work, word graphs (a.k.a. word lattices) have been widely adopted to represent the com-
peting hypothesis space for DT. A word graph is represented as a directed, acyclic, weighted graph. Its nodes
represent discrete points in time. Each arc, denoted as «, is labeled with three variables, i.e., a = [w];, where w
is the hypothesized word attached to this arc, and s and e denote the starting and ending time instances of the
arc, respectively. Also, each arc is associated with a weight, which is actually acoustic score to generate acous-
tic feature vectors from time s to e based on HMM of word w. In a word graph, there are two special nodes:
one is called START node which corresponds to the beginning of the utterance and one END node for the end
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of the utterance. Any path from START node to END node is called a complete path which represents a sen-
tence (a sequence of words) hypotheses for the underlying utterance. Obviously, word graph is a very compact
method to represent hypothesis strings since even a relatively small graph may include a large number of string
hypotheses. When a word graph is used to represent the hypothesis space for DT objective functions, compet-
ing string s, needs to sum over all complete paths in the word graph. If we directly apply E-approx to construct
auxiliary functions for word graphs, calculation of 27 (-) requires summation of posterior probabilities for all
complete paths in the word graph, which obviously is computationally prohibitive. However, it is easy to show
that the summation can be re-arranged over all arcs in the graph, instead of all complete paths. We first run
the forward—backward algorithm in Wessel et al. (2001) to obtain the posterior probability for every arc. Then
we run the forward-backward algorithm locally for every arc to collect statistics from this arc. At last, we sum
up statistics from all arcs, weighted by the pre-calculated posterior probability of the arc, to compute the final
overall statistics from the entire word graph. In this way, the auxiliary function 2pr(-) can be computed fairly
efficiently even for very large graphs.

Finally, all word graphs used for DT are generated from a Viterbi beam search. Some experimental results
suggest that a rather weak language model (such as unigram or bigram) should be used in order to generate
more dense graphs to cover more acoustically competing hypotheses for DT.

6. Conclusions and future work

Discriminative training has achieved a huge success in ASR during the past decades. Specially in recent
years, discriminative training methods have steadily driven down speech recognition error rates across a vari-
ety of tasks. In this paper, we have reviewed these discriminative training techniques for HMMs in context of
acoustic modeling in ASR. We believe discriminative training will continue to be a very active research area in
ASR and expect that discriminative training methods will be extended to every corner of recognizer design,
such as discriminative training of language models, discriminative learning of model structure not just param-
eters, discriminative feature extraction in the front-end. At last, we also anticipate that the successful story of
discriminative training in ASR will soon inspire more applications of discriminative learning techniques in
other domains, such as statistical machine translation, text categorization, computer vision, biometrics, infor-
matics and much more.
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