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Abstract—In this paper, we have proposed two novel optimiza-
tion methods for discriminative training (DT) of hidden Markov
models (HMMs) in speech recognition based on an efficient global
optimization algorithm used to solve the so-called trust region (TR)
problem, where a quadratic function is minimized under a spher-
ical constraint. In the first method, maximum mutual information
estimation (MMIE) of Gaussian mixture HMMs is formulated as
a standard TR problem so that the efficient global optimization
method can be used in each iteration to maximize the auxiliary
function of discriminative training for speech recognition. In the
second method, we propose to construct a new auxiliary function
for DT of HMMs by adding a quadratic penalty term. The new
auxiliary function is constructed to serve as first-order approxi-
mation as well as lower bound of the original discriminative objec-
tive function within a locality constraint. Due to the lower-bound
property, the found optimal point of the new auxiliary function is
guaranteed to improve the original discriminative objective func-
tion until it converges to a local optimum or stationary point of the
objective function. Both TR-based optimization methods have been
investigated on two standard large-vocabulary continuous speech
recognition tasks, using the WSJ0 and Switchboard databases. Ex-
perimental results have shown that the proposed TR methods out-
perform the conventional EBW method in terms of convergence
behavior as well as recognition performance.

Index Terms—Discriminative training, global optimization,
lower-bounded aucxiliary function, trust region problem.

1. INTRODUCTION

ECENTLY, discriminative training (DT) methods have
R achieved tremendous success on a variety of automatic
speech recognition (ASR) tasks. Many DT methods have been
proposed to estimate Gaussian mixture hidden Markov models
(HMMs), see a recent survey in [8]. Discriminative training of
HMM parameters is a typical optimization problem. We first
formulate an objective function according to certain discrimi-
native criterion, such as maximum mutual information (MMI)
[2], [22], minimum classification error (MCE) [9], minimum

Manuscript received May 18, 2010; revised October 20, 2010; accepted April
12,2011. Date of publication April 21, 2011; date of current version September
23, 2011. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Mark J. F. Gales.

C. Liu and Y. Hu are with iFlytek Research, Hefei 230000, China (e-mail:
ustc.congliu@gmail.com; congliu2 @iflytek.com; yuhu@iflytek.com).

L.-R. Dai is with the iFlytek Speech Lab, University of Science and Tech-
nology of China, Hefei 230000, China (e-mail: Irdai @ustc.edu.cn).

H. Jiang is with the Department of Computer Science and Engineering, York
University, Toronto, ON M3J 1P3, Canada (e-mail: hj@cse.yorku.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASL.2011.2144969

word or phone error (MWE or MPE) [16], large margin esti-
mation (LME) [5], [10], [18], [21], etc. Next, an effective opti-
mization method is used to minimize or maximize the objective
function with respect to (w.r.t.) model parameters. In speech
recognition, many different methods have been used to opti-
mize the derived objective functions to estimate Gaussian mix-
ture HMMs, including generalized probabilistic descent (GPD)
[9] based on first-order gradient descent algorithm, approximate
second-order Quickprop method [13], extended Baum—Welch
(EBW) algorithm [2], [4], [22] based on growth transformation,
constrained line search [11] and convex optimization [7]. The
major difficulty of DT in ASR lies in the fact that the above-
mentioned DT criteria normally lead to quite complicated ob-
jective functions, which are pretty hard to optimize directly. In
many cases, we need to construct an auxiliary function in sim-
pler form and then iteratively optimize the auxiliary function in-
stead of the original objective function. From the viewpoint of
optimization theory, two important issues must be addressed for
this formulation: 1) how to effectively find the optimal point of
the auxiliary function; 2) how to ensure the found optimal point
of the auxiliary function also improves the original objective
function. In the well-known EM algorithm [3], both problems
are solved perfectly. In EM, the constructed auxiliary function
is always a concave function so that its global maximum can
be obtained efficiently by either convex optimization methods
or even a closed-form solution in many cases. Moreover, the
auxiliary function in EM is a strict lower-bound of the orig-
inal objective function. As a result, any increase in the aux-
iliary function always corresponds to an even larger increase
in the original objective function. Because of these nice prop-
erties, convergence of the objective function is guaranteed in
EM. In other words, the original objective function is guaran-
teed to increase over EM iterations until it converges to a local
optimum or stationary point of the original objective function.
In discriminative training, an EM-style auxiliary function is nor-
mally constructed as in [6], [7], [17], but convergence of the cor-
responding iterative optimization methods is not theoretically
guaranteed. The reason is twofold: 1) the derived auxiliary func-
tion in DT is neither convex nor concave so that optimization
of the nonconvex auxiliary function itself is a big challenge; 2)
the derived auxiliary function is not a strict lower-bound of the
original DT objective function so that optimizing the auxiliary
functions does not guarantee to improve the original objective
function accordingly.

In this paper, we have proposed to use the so-called trust
region (TR) method [14], [19] to address the above-mentioned
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two issues in discriminative training of HMMs for speech
recognition. Here, we refer TR problem as minimization of a
quadratic function subject to a sphere or elliptic constraint[19].
The TR problem is one of a few non-convex optimization
problems where the globally optimal solution can be found in
an efficient way. In this work, we take MMI estimation as an
example though the same ideas can be easily extended to other
discriminative criteria. Following the approximation—maxi-
mization manner in [6], [7], we first derive an auxiliary function
to approximate the MMI objective function of HMMs in a close
neighborhood of initial model parameters [11]. For Gaussian
mixture HMMs, the auxiliary function can be represented as an
indefinite quadratic function of model parameters. Obviously,
under the assumption of the locality constraint, the TR-based
global optimization algorithm can be used to find the global
optimum of the non-convex auxiliary function, which nicely
solves the first critical issue arising in DT of HMMs as men-
tioned above. Furthermore, we propose to construct a new
auxiliary function by penalizing the above auxiliary function
with a positive definite quadratic term, which is derived by
upper-bounding the gap function between the old auxiliary
function and the MMI original objective function within the
locality constraint. In this way, the new penalized auxiliary
function serves as a strict lower bound of the MMI objective
function and also takes the same function form as the old one
so that it can still be optimized by the TR algorithm. More
importantly, just like the EM algorithm, any increase in the new
auxiliary function always guarantees an even larger increase of
the original objective function due to the lower-bound property.
Therefore, the second problem in DT as mentioned above has
also been nicely solved. In this work, we have evaluated the
proposed TR methods on two standard large-vocabulary ASR
tasks using the WSJO and Switchboard databases. Experimental
results have shown that the proposed TR methods yields much
better learning curves than the conventional EBW method in
terms of maximizing the MMI objective function in the MMI
training process. It is also observed that the proposed TR
methods can achieve better recognition performance than the
conventional EBW method on all evaluated ASR tasks.

The remainder of this paper is organized as follows. In
Section II, we briefly review the standard TR problem along
with an efficient global optimization algorithm to solve TR
problems. In Section III, we take the MMI training as an example
to demonstrate how to formulate the MMI estimation of HMMs
as a'TR problem so that it can be efficiently solved by the efficient
TR algorithm. In Section IV, we study how to use a quadratic
penalty term to construct a new auxiliary function, which serves
as a strict lower-bound of the MMI objective function. The
new auxiliary function takes the same function form so that the
efficient TR algorithm can be equally applied to find its globally
optimal solution as well. Next, experimental results on two
large vocabulary ASR tasks using the WSJO and Switchboard
databases are reported and discussed in Section V. At last, the
paper is concluded with our conclusions and findings.

II. TRUST REGION PROBLEM AND ITS SOLUTION

It is well known that most non-convex optimization problems
are difficult to solve. One of a few exceptions is minimization
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of an indefinite quadratic function under a spherical or elliptic
constraint, which is usually called frust region (TR) problems
[19]. In this section, we briefly review the optimization theory
to show how the global optimum of the TR problem can be
efficiently found using a fast global optimization algorithm.!

Recall that a general quadratic function w.r.t. a n-variable
vector, x, has the form (1/2)x"Qx + q'x, where Q is a
symmetric (not necessarily positive definite) matrix and q is a
vector. A standard TR problem is expressed as

min
XERH

st xX'x < p2 (D)

1
ixTQX +q'x

with p a constant to control size of the spherical trust region.
If @ is positive definite, the global minimum to (1) can be
calculated as x = —Q~'q. Furthermore, if the norm of x is
bounded by p?, ie., X% < p?, then % is a feasible solution
of the TR problem in (1). In all other situations, the global
minimum of (1) can also be found efficiently based on the
following theorem [14].

Theorem 1: The vector x* is the global solution to the trust
region problem in (1), if and only if x* is feasible and there is a
scalar 7 > 0 such that the following conditions are satisfied:

(Q+7Hx" = —q
T(X*TX* o /)2) =0

(Q + 71) is positive semi-definite 2

where I denotes identity matrix.

As proven in [14], the conditions in (2) are both necessary and
sufficient conditions of that x* is the globally optimal solution
to (1). Based on the first condition in (2), the global minimum
x* can be easily calculated based on a scalar 7 as

x*=—(Q+7I)'q 3)

Therefore, the TR problem in (1) turns into a much easier
problem to search for a scalar 7 that satisfies (Q + 7I) is
positive semi-definite and the norm of the above vector x* is
equal to p?, ie., x*Tx* = ||(Q + 7I) 1q||» = p*

Moreover, another theorem in [14] is useful for searching the
optimal scalar 7 for x*. If we define 7 as the minimum value
of 7 such that @ + 71 is positive semi-definite, then it is easy to
see that 7 is equal to the negative value of the smallest (closest
to -00) eigenvalue of Q.

Theorem 2: 1If q # 0, 71 and 75 are two scalars that satisfy
7o < 71 < T2.Letx] and x3 are solutions to (Q+7 I)x} = —q
and (Q + T2 1)x3 = —q, respectively, then ||x7||2 > [|x3]]2-

In other words, the norm ||(Q +71) " q||2 is a monotonically
decreasing function of 7 for 7 > 7j. As a result, the unique
scalar, denoted as 7*, which satisfies ||(Q + 7*I)~'q|2 = p?,
can be efficiently found in the interval [, +00) using a binary
search method.

1Global optimization refers to optimization methods that are guaranteed to
find a globally optimal solution.
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III. FORMULATING MMI TRAINING AS
TRUST REGION PROBLEM

A. MMI Training as Constrained Optimization

Given a training set containing R utterances {O1,...,Ogr}
along with the corresponding transcripts {Si,...,S R}, the
well-known MMI objective function in speech recognition can
be expressed as

— log Z (O, 5y |

R
FMMI(A):Z logp(O,., S, | A)
r=1 $rEM,

“

where A represents the set of all HMM parameters, and M.,
denotes a word graph generated for O,. consisting of all possible
competing word sequences.

As shown in [11], it is beneficial to impose a locality con-
straint on model parameters A during each iteration to ensure
that they do not deviate too much from the initial value, i.e.,
A() . The locality constraint can be quantitatively defined
based on Kullback-Leibler (KL) divergence. Therefore, the
MMI training of HMM parameters, A, can be formulated as the
following iterative constrained maximization problem:

A = argmax Faoar(A) (5
A
subject to D(A || A1) < p? ©)

where D(A || A(™) is the KL divergence between probability
distributions specified by A and A and p > 0 is a constant
to define the feasible trust region for optimization.

In the following, we consider how to convert the above con-
strained maximization problem in (5) and (6) into a standard TR
problem as in (1).

B. Reformulating KL-Based Constraint as Spherical
Constraint

We will first show how to formulate the KL-based locality
constraint in (6) as a spherical form, as required in the stan-
dard trust region problem in (1). Assume there are totally K
Gaussians in the HMM set, i.e., A = {\Jk = 1,...,K},
where A; denotes a multivariate Gaussian distribution with
mean vector g, and covariance matrix Y, i.e., N (g, Xk)
with k& € (1,..., K). For simplicity, in this paper, we assume
all covariance matrices, Yj, are diagonal. As shown in [11],
the joint constraint in (6) can be relaxed as sum of individual
constraints related to all Gaussians:

DA A™) <37 DO | M) < ™
k

As we know, the KL divergence between two Gaussians, i.e.,
DAk || )\2,")), can be calculated by the following closed-form
formula:

DO | M) = DN (g, S) | N (™, 2(M))

n n) 1 n
[ )T v)

B — By,

DN | =
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=

1
+ tr(EkE,(cn) ) + log —|E’k|

-D| ®

where D is dimension of feature vectors.

Furthermore, we can break down the constraint in (8) into
two separate terms relevant to Gaussian mean and covariance
matrix, respectively,

n 1
()):—(Il'k*ﬂ

n n -1
D(uy, || 1 e

e m) O
! [t 2 )41 2
2 A

[N}

D I55") = D].10)

If we normalize each mean vector u; with the 1r11tial mean
(n)

vector, g, and the initial covariance matrix, E ,3 of the cor-
responding Gaussian as fi;, = Z,(Cn) 1 2(;1,“ (n , the locality

constraint for Gaussian mean vectors in (9) can be eas11y formu-
lated as a quadratic form as follows:

> Dl || ")
k

where xy denotes a large super-vector (in column) con-
structed with all normalized mean vectors as xyu =

(i i o]
18255 K (KD><1).-

Similarly, we consider to formulate the KL-based constraint
for covariance matrix in (10) into the same spherical format.
As mentioned above, we assume all covariance matrices J;, are
diagonal: ¥), = diag(c3,,0%,,...,0%p). Thus, the KL-based
locality of covariance matrices in (10) can be simplified as

1 o2 a2
D(Eknz,i")):—z[ o o —a—
2 d (Gl(cd))z (Gl(cd))2

If we normalize Gaussian Varlances using the following trans-
formation: 644 = log (okd/a ) (Vk, d) based on the initial
variance values, the constraint in (12) can be expressed as

x Xpxp < p° (11)

(12)

n 1 . .
D(Sy || B0 = 5 S [P — 26— 1], (13)

d

Based on the second-order approximation of the Taylor series
expansionin [11]: e¥ —y— 1| ~0 ~ y2/2, the KL constraint for
covariance matrix in (13) can be approximated as the following
quadratic form:

D | =)~ Y62, (14)
d

Assume we define a variance vector using all normalized vari-
ances as 6 = [Gg1,0%k2,---,0kn]  for the kth Gaussian, and
construct a super-vector Xy, based on the normalized variance

vectors from all Gaussians in the whole model set as xy; =

o761

0,05 ,..., &T} , we can derive a spherical constraint
(KDx1)

for covariance matrices as follows:

ST DE I BY) o xgxs < P2 (15)
k
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C. Casting MMI Auxiliary Function as Quadratic Function

Following the iterative optimization strategy as the approxi-
mation—maximization (AM) method in [6] and [7], we construct
an auxiliary function in each iteration and maximize the auxil-
iary function so that the original objective function can be op-
timized in an indirect way. As in [7], we first construct an aux-
iliary function Q as a local approximation of Fy\r around an
initial point A(™) as

Q(A[A™)

—ZZ
—Z > D> (e [ On, My, A™) - log p(Oy, 1y s, | A)

r s, €EM, 1,
+ C

= Z Z Z (’Ylj—rf - ’71:71%) logp(orty k | A) + Cl
k7 t

where 1, denotes the unobserved Gaussian label sequences of
O, in HMM, and ~;, and +,,, denote occupancy statistics
collected for kth Gaussian kernel based on reference S, and
word graph M,., respectively, and p(o,+,k | A) stands for
output probability of one feature vector calculated based on
kth Gaussian distribution in the model set, and C; is a constant
independent of A.

It is straightforward to show that the above auxiliary function,
Q(A[AM), satisfies Fyinii(A)[azacn = QAJAM)|x_xo,
and OF\vr(A)/OAy_ ey = OQ(AJAT)JON|y_pim).
Therefore, Q(A|A(™)) can be viewed as a first-order tangential
approximation of the MMI objective function, Fyvr(A), at
A,

Since we have

1, | OT7ST7A(n)) '1ng(0r-,1r75r | A)

(16)

1 _
log p(0rt, k|A)=—= 105% |Xk|— (Ort Mk) X, 1(0rt—ﬂk)+C2

for Gaussian mixture HMMs, maximizing the auxiliary function

Q(A|A™) in (16) is equivalent to minimizing the following
function:
A|A n) Z Z Z rykrt ’ykrt

A7)

[loglzkl + (ort — ) "5 (ore — )]

D. Update Gaussian Mean Vectors Using the TR Methods

If we assume covariance matrices are constant and only up-
date Gaussian mean vectors, the objective function in (17) can
be simplified as follows:

Qulpu™)

=SSN i) [~ )T o0 )
k T t

SED3) D) BILTHEAN | RE A EYCE
k r t
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where 0,y = E,(c")_l/ 2(ort — p,,(c")) denotes feature vectors
normalized in the same manner using the initial Gaussian mean
vector and covariance matrix.

Let v, = Zr Zt(fyz—rt - '7];71) and §;, = — Zr Zt(fyl‘:” -
Vint )0kt denote the corresponding zero-order and first-order
statistics collected from all available training data, we define the

following matrix and vector as

Y1 - Ipxp
Y2 - IpxD
Qu=
L Yk - IpxD (KDxKD)
T
q[l:: gl 762 /§Ki| (KDx1) .

MMI estimation of Gaussian mean vectors turns into a con-
strained minimization problem as follows:

n}in Qplu'™) = m[ll,n [ xpQuxp + dpXp

S.t. xl—';,xu, Sp . (19)

where xy, is the super-vector of all normalized mean vectors
as constructed in (11). Obviously, this is a standard trust region
problem as defined in (1).

E. Update Covariance Matrices Using the TR Methods

On the other hand, if we assume Gaussian mean vectors are
constant and only update the diagonal covariance matrices, (17)
can be simplified as follows:

ZZZ ryk'rt rykrt
. [log|2k|+(0rt *Illz(cl))TEk_»l( *l"l(c ))]
1
= Z Z Z (VI:_M - 'Vk_rt)
2 k 7

(n)

Z [2-1 Gid) + (U’“’ )2 Aﬁ,ﬂtd} +Cy

Q(x|xM) =

Okd

ZZZ Vkrt 'Vkrt

Z [20kd+ (1 — 2644+ 264,) - 6irtd:| +Cy
d
= Z Z Z (ryljrt - Fy]:'rt)
k T t

: Z I:é%rtd O+ (1 — 6%:rtd)a'kdj| +C5
d
(20)

where 0y,,+4 denotes the dth dimension of the normalized feature
vector 0 +.
If we denote the corresponding statistics as 7pq =

2 Zr Zt(’ykt‘t - ’yl:rt> : 6%11(1’ de = Zr Zt(’ylj:»rt - ’ijrt)(l -
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0%,44), We can define the following matrix and vector in a
similar way as follows:

(711 W
M2
QE — D
n21
i KD 4 (KkDxKD)
-
as = [G1, G2, -+ Ck D) (kD) -

Therefore, the MMI estimation of Gaussian covariance ma-
trices in each iteration can be converted into the following TR
problem as

_ 1
mzin Q(E|E(n)) = min §X;Q2Xz + quE
Xz

S.t. x;xE §p2.

(2D

In summary, the MMI objective function can be approximated
by the above auxiliary function Q(A|A(™) in (16). Therefore,
the MMI estimation of either Gaussian mean vectors or covari-
ance matrices of HMMs can be converted into an iterative op-
timization problem, which is a standard TR problem with in-
definite matrices Qg and Qx:. Therefore, the globally optimal
solution in each iteration can be easily derived as

(22)
(23)

xp=— (Qu+ul)  ap
Xy = — (Qu+7s0)as

where the optimal values of 7, and 75, can be efficiently found
by the binary search algorithm as introduced in Section II.

As a remark, the ideas in this section have recently been
studied in [12] as well. The major difference is that we use a
more efficient binary search for the optimal value of 7, instead
of the second order Newton method as in [12].

IV. MMI AS BOUNDED TRUST REGION PROBLEM

Under the framework of locality constraint, the MMI objec-
tive function is first approximated by a simpler auxiliary func-
tion, which is optimized in each iteration instead of the original
MMI objective function. Even though the auxiliary function is
neither convex nor concave in discriminative training, the pro-
posed TR method has perfectly solved its optimization problem
since the TR algorithm can efficiently find the globally optimal
point of the nonconvex auxiliary function. However, the second
problem in DT remains open: the found global optimum is not
guaranteed to improve the original MMI objective function all
the time since the tangential auxiliary function in (16) is not a
strict lower bound of the MMI objective function.

A. Lower-Bounded Auxiliary Function

In this study, we propose to construct a new auxiliary func-
tion by penalizing the auxiliary function in (16), Q(A|A(™)),
by subtracting a positive definite quadratic term. The quadratic
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N locality constraint

(A= AT DA — AT

1
2

:.\i n) A

Fig. 1. Illustration of the lower bounded auxiliary function in discriminative
training.

penalty term is constructed in such a way that the new auxiliary
function remains as the first-order approximation of the orig-
inal objective function and more importantly it also serves as
a lower bound of the original objective function within the lo-
cality constraint. Furthermore, the new auxiliary function takes
the exactly same function form as the old auxiliary function,
Q(A|A(™). Therefore, the TR-based global optimization algo-
rithm can be similarly applied to find the globally optimal point
of the new auxiliary function. The critical difference is that the
found global solution is guaranteed to improve the original MMI
objective function because of the lower-bound property.

As illustrated in Fig. 1, we propose to construct a new auxil-
iary function by penalizing Q(A|A () as follows:

1
E(AA™) = Q(A|AM) — S - AMHYTPA — AM) (24)
where P is a positive semi-definite matrix, denoted as
P > 0. Obviously, the new auxiliary function £(A|A(™)
still remains as a tangential first-order approximation of the
original MMI objective function since it is straightforward
and

= 5(A|A(n))‘
A=A() A=A(n)
F A A = (n)
OF\yivi(A)/0 ’A Ao OE(A|A )/81\‘1\:/\(71) based on

the tangent property of Q(A|A(™).

Moreover, because matrix P is positive semi-definite, if | P
is sufficiently large, as shown in Fig. 1, the added penalty term
will drag down Q to make £ a strict lower bound of the original
objective function as

to prove that Fyn(A)

E(AAM)Y < Fymr(A). (25)

Since the penalty term is also quadratic form, £(A|A()) has
the exactly same function form as Q(A|A(™). If we represent
E(A|A™) in terms of normalized super-vector x as above, op-
timization of the new auxiliary function in each iteration can be
represented as the following TR problem:

1
A* =arg max £(A]A™) = arg min §XT(Q +P)x+q'x
A x
(26)
subject to xTx < p>. Therefore, the above TR algorithm can be

applied to solve this problem in the same way except that matrix
@ is replaced by @ + P.
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B. Derivation of Penalty Matrix P

Even though a sufficiently positive P matrix can always com-
pensate Q to make £ a lower bound of F, it is not desirable to
add a too positive P since it will result in a very slow conver-
gence rate for model training. In this work, we propose to add
a minimum P that is just positive enough to ensure that (25)
holds within the local region as specified in (6). In this section,
we consider how to derive such a tight minimum positive def-
inite matrix P by upper-bounding a gap function between Q
and F.

As shown in the Appendix, the gap function between
G(A|A™) between Q and F can be computed as

G(A|A™)
= Q(AJA™) — Fanr(AJA™)

=33 p(1]0,, S, AM) o
r 1,
-2 2l

r L.eM,

p(1,]0,,S,, )
p(1-|0y, Sy, A()

p(1T|O’I",M’l"7A)
p(lT|OT7MT7A(n)) ’

27)

O, My, A log

We first apply the Bayes’ theorem, i.e., p(1.|O,,S,.,A) =
p(1:, O | SpyA)/p(O, | Si-y A), to the posterior probability
terms in (27). Meanwhile, we make the two assump-
tions regarding model parameters during optimization as
(O, | Sp,A) = p(O, | S, A™) and

> eent, POn 1 s0. M) = 320 cop p(Oy | 5, A). Obvi-
ously, these two assumptions can be easily justified in the above
iterative constrained optimization framework. Because of the lo-
cality constraint in (6), it is valid to assume that model param-
eters do not dramatically change from their initial value A(™)
in each iteration. Therefore, the gap function G(A|A(™)) can be
simplified as follows:

2.0
: [logp(l'r OT|S1’7A)710gp(lr7 O1|ST7A(n))i|

DD

r sr€M, 1,
[10gp(1;, Oylsy, A) = Tog p(L,, Oy sy, AC)]

= Z Z Z (7k+rt - ’YI:rt)

- [ogp(ore, k| A) = log ploys, k| AT)] 28)

G(AJAM™) = 1,:10,, 8,, A(™)

(1|0, M., A™)

where 'y,;f;t and ., denote statistics collected in the same way
as in (16). After we substitute Gaussian distribution into (28),
we can represent the gap function w.r.t. Gaussian means and
covariances as shown in (29) at the bottom of the page.
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In the following, we will derive matrix P for the
lower-bounded auxiliary functions for Gaussian mean vec-
tors and covariance matrices, respectively.

1) Deriving Matrix Py, for Gaussian Mean Vectors: If we
only update Gaussian mean vectors, we can assume covariance
matrices remain constant, i.e., 2, = E;") (Vk), the gap func-
tion in (29) can be represented as a function of mean vectors:

kvt
’ [(61«7“15 - ﬂk)T(bkrt — ) — 62‘,—rt6k7t]
= — % Z Z Z(’Y}j_ﬁ - %:rf,)
kvt

’ [ﬂ[ﬂk -

G|p

201,401, (30)

where f1;, and 0,-+ denote normalized mean vectors and feature
vectors as defined above.

Since we only update mean vectors, the penalized term in
(24) can also be represented as a function of mean vectors, i.e.,
(1/ Q)XEPII,X”,. The key idea to derive matrix Py is to ensure
that the penalty term remains as a strict upper bound of the above
gap function within the locality constraint x;x,,, < p?as

S > O™, (31)
It is easy to verify that (31) implies (25).

In order to derive simple closed-form solution for matrix P,
we assume matrix P is diagonal and use pgq to represent the
corresponding diagonal element of matrix P for the dth dimen-
sion of the kth Gaussian. Furthermore, we decompose the joint
locality constraint X;X“ < p? to all individual Gaussian di-
mensions as

fira < pra (Vk,d)

where Y, >, p2, = p*. Obviously, the decomposed con-
straints are stronger and tighter than the original joint constraint.
Based on these, we will be able to derive a simple closed-form
formula to calculate each diagonal element pjg of matrix P
independently. Note that in discriminative training of HMMs,
the quadratic form in the TR problem, i.e., matrix @, is usually
indefinite. Therefore, the optimal solution normally appears
on the outer surface of the locality constraint. A sufficient
condition to calculate the minimum value for pg4 is to ensure
that the every Gaussian dimension in both sides of the condition
in (31) satisfies on the outer surface of (32) as follows:

(32)

Drdfbrd + Viftkd + 2Eka >0 (33)
firg = Pra (34)
where v = Y, 3 (Vi = Yene)s Ekd = =2, D (i —

'y,;rt) - Ogrtd» and pyq is derived by allocating the global con-

G(AJA™) =

1 D
=5 22D D (e = Vi) {log ;ffll'

k r t | k

+(ort — Hk) Xy 1(0rt_ll'k) (ort_ll'k )Tz(n) (Ort—ll'én))

(29)
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straint p? to all individual Gaussians in proportional to their sta-
tistics: min{~;",7; |7 — 74 |} and subject to the condition
> >, pis = p?, and then distributing it to all Gaussian di-
mensions uniformly.
After substituting (34) into (33), the minimum value of pgq
can be derived as follows:
e} (35)

where € (¢ > 0) is a small positive value to ensure matrix Py
positive definite. Finally, matrix Py, is constructed for Gaussian
means as Py = o - diag{pi1,....p1d---,Pkd,---PKD}»
where « (« > 0) is a control parameter introduced to compen-
sate all approximation and assumptions in deriving matrix P as
a lower bound of the original objective function.

2) Deriving Matrix Ps, for Covariance Matrices: If we only
update covariance matrices in discriminative training, we as-
sume Gaussian mean vectors are constant, i.e., pt;, = p,kn) (Vk),
the gap function in (29) can be represented as a function of
covariance matrices. Furthermore, if we still accept the
second-order Taylor series approximation, we can simplify the
gap function as follows:

28ka
) k — ’
Pkd Pkd

G(z|nM)
1
= ) zk: Z Zt:(’yljrt - ’71;rt)
| [105%‘ ||EE(:)| +<ort—u,i")f(2k1—2,£">1)(ow—“5vn))]
k
1
= 3 Z Z Z(’ylj;"t - ’71:71)
k I8 t
(n)
3 | 2 bt [(%5) 1]

a
d Oka kd

= Y 0k )
a
~ —% zk: Z Et:(%i«t = Vkrt)
. E}: [2&kd1+ Oprta * (2074 = 26ka)]
- _Xk: Z Zt:(v;iit = Viert)

‘ Z [07rta - O+ (1 = 03104)Oka] -
d

(36)

Since we only consider to update covariance matrices, the
penalized term in (24) can also be represented as a function of
covariance matrices in matrix format as (1/2)xy, PsXs, where
xy denotes the super-vector constructed by normalized variance
vectors as in (15). The key idea to derive matrix Ps is to derive
the penalty term as an upper-bound of the gap function within
the locality constraint x4 x5 < pZ as

%x;PExE > G(2|n™). (37
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Following the same ideas to decompose the constraint to all
Gaussian dimensions, we can compute the minimum value of
pra of all diagonal elements in matrix Py, which satisfies (37),
by solving the following two equations:

(38)
(39)

PkdOkd + MkdOkd + 2Ckqd >0

A2 2
Okd = Pkd

where nea = 23, Zt(’yl_:rt = Virt) * Okpras Cha =
S (vt = Vee) (1= 62,.4), and ppq is allocated from the
global constraint p in the same manner as the case of Gaussian
mean vectors.

After substituting (39) to (38), the minimum value of p4 for
each Gaussian dimension in matrix P can be derived as follows:

_ 2Cka 2Cka
Pkd = MaxX — Nkd + —— —Nkd — ;€
Pkd Pkd

(40)

where ¢ (¢ > 0) is a small positive number to en-
sure positive definiteness of matrix Ps. At last, matrix
Ps, is constructed for Gaussian covariance matrices as
PE = -;pkd;-npKD}» where «
is the control parameter as above.

After deriving matrices Py, and Psx. for Gaussian means and
covariance matrices, respectively, we can substitute them into
(26) to construct the new auxiliary function for Gaussian mean
vectors and covariance matrices, which can be optimized by
using the same TR algorithm as introduced in Section II. In sum-
mary, for any pre-defined trust region p, we can calculate the
corresponding penalized matrix P, which ensures that the new
auxiliary function serves as a strict lower bound of the original
objective function within the trust region specified by p. As are-
sult, the proposed bounded TR method will converge to a local
optimum or stationary point of the original objective function.

V. EXPERIMENTS

In this section, we evaluate effectiveness of the proposed
TR-based optimization methods in discriminative training of
HMMs on two large-vocabulary continuous speech recognition
tasks using the Wall Street Journal (WSJ0) and Switchboard
databases. In the experiments, we compare the proposed TR
methods, namely the original TR algorithm as well as the
bounded TR using the new auxiliary function, with the con-
ventional EBW based optimization method. Experimental
setup is summarized in Table 1. In our discriminative training
methods, we always use the best MLE models as initial models,
which are estimated using the HTK toolkit based on a standard
training procedure. In the EBW method, as suggested in [17],
i-smoothing is applied and all parameters are fine tuned and
their optimal values are set as &£ = 2, 7 = 100 (i-smoothing
factor).

In the TR-based optimization methods, we need to tune pa-
rameter p that controls the range of trust region for updating
model parameters. In the proposed bounded TR method, we also
need to tune the compensation parameter o in constructing ma-
trix P.

In the following, we first conduct a few sets of experiments
on the WSJ-5k task, including: 1) evaluating effect of different
p values in TR-based optimization methods; 2) tuning scaling
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TABLE I
EXPERIMENTAL SETUP IS LISTED FOR ALL RECOGNITION TASKS

Training set Acoustic features training data | # tied states | mix/state
WSJOo 13 MFCCs +A + AA 15 hrs 2774 8
Switch- | 60-hour subset | 13 PLPs +A + AA 60 hrs 6000 8
board hétrain00 13 PLPs +A + AA 265 hrs 9000 40

MMIE Criterion of Different Methods
on WSJ-5k Task (p=20)
T T

=007 -

0008
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| =B=TR_org
=7~ TR_bound (a=0.1}
=¥~ TR_bound (x=0.9)
& T ]

5
Ieerations.

Fig. 2. Comparison of MMI objective function for different optimization
methods on WSJ-5k task (p = 20).

factor o for the best convergency behavior; 3) comparing
learning curves and recognition performance for different
optimization methods when updating Gaussian means only or
update both Gaussian means and covariance matrices at the
same time. Note that in the EBW, we can update both mean and
covariance matrices simultaneously in a single iteration. How-
ever, for the TR methods, we have to conduct two sub-steps: the
first one is to update means only and the second one is to update
covariance matrices only based on the re-collected statistics.
Based on the best experimental setting in the WSJ-5k task, we
further examine the TR methods in two more challenging tasks
using the Switchboard database, namely the SWB 60-hour
subset and the SWD h5train00 full set.

A. WSJ-5k Task

In this section, we evaluate the proposed TR methods on a
small-scale task using the WSJO database. The training set is
the standard SI-84 set, consisting of 7133 utterances from 84
speakers. Evaluation is performed on the standard Nov’92 non-
verbalized 5k close-vocabulary test set (wsj-5k), including 330
utterances from 8 speakers. Note that this test set is used as both
development set and evaluation set in our WSJ-5k experiments.
For the MLE baseline, we use HTK to build cross-word triphone
HMDMs with a total number of 2,774 tied-states and 8 Gaussians
per state. The word error rate (WER) of the MLE baseline using
a standard trigram LM is 4.89%. The acoustic scaling factor
used for DT is set as £ = 1/15.

We first tune parameters p and « based on the configuration
of updating Gaussian means only. We examine three different

MMIE Criterion of Different Methods
on WSJ-5k Task (p=50)
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Fig. 3. Comparison of MMI objective function for different optimization
methods on WSJ-5k task (p = 50).

MMIE Criterion of Different Methods
on WSJ-5k Task (p=100)

s
3
i

&
i

&
§
7

n
g

&
2
T

D01 -

Objactive function (per frama)
&
g

DNz

-~ EBW

=B-TR_org

=57~ TR_bound (=0.5)
: 3= TR_bound (a=0.9)
& 7 8 [ [

Q3|

]
Iterations

Fig. 4. Comparison of MMI objective function for different optimization
methods on WSJ-5k task (p = 100).

p values for trust region: 20, 50 and 100. For each p value,
we also study the effect of different o values in the range [0.0,
2.0]. The learning curves of the MMI objective function using
various optimization methods under different experimental set-
ting are shown in Figs. 2—4, respectively. From the learning
curves shown in Figs. 2—4, it is clear that both TR methods
can significantly outperform the conventional EBW method in
terms of optimizing the MMI objective function, under different
choices of p. Furthermore, when setting a proper value for «,
the bounded TR method yields a much smoother and steadily
growing learning curve comparing with that of the original TR
method without the penalization term. From these results, we
can see that a smaller scaling factor « is enough to achieve stable
learning curves when the range of trust region p is small, e.g.,
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MMIE Criterion of Different Methods
on WSJ-5k Task (p=20, «=0.1)
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Fig. 5. Comparison of MMI objective function for different optimization methods on WSJ-5k: Updating Gaussian means only (denoted as i in left figure) versus

updating both Gaussian means and variances (denoted as mwv in right figure).

TABLE II
SUMMARY OF BEST RECOGNITION PERFORMANCE (WER IN %)
ON SEVERAL ASR TASKS

WER (%) Test Set | Configuration | MLE | EBW | TR_org | TR-bound
WSJ-5k Nov92 m 4.89 | 4.30 3.75 3.72
mé&v 4.89 | 3.98 3.53 347
SWB subset Hub98 m& v 479 | 45.2 45.1 45.0
Hub01 m&v 372 | 34.1 34.0 33.8
SWB hitrain00 | Hub98 m& v 413 | 395 39.4 39.2
Hub01 m&v 315 | 29.5 29.6 29.3

p = 20, while a larger value of « in this case may make the
MMI objective function grow more slowly. On the other hand,
when the size of trust region, i.e., p, becomes larger, we need to
penalize the auxiliary function more to make it a lower bound
of the original objective function in a wider range. Therefore, a
larger value is required for « to achieve a better learning curve
of the objective function. Finally, we also summarize the best
recognition performance in word error rate (WER) of different
optimization methods in Table II. The results show that in the
WSJ-5k task both TR-based methods can achieve much lower
WER than the EBW method, and the proposed bounded TR
method yields slightly better performance than the original TR
method without using the penalized term.

Next, we choose a fixed set of configuration of p and o
(e.g., p = 20, @ = 0.1), to compare performance of updating
Gaussian means only versus that of updating both Gaussian
means and variances simultaneously. The learning curves of
the MMI objective function are shown in Fig. 5. We can see that
recognition of updating both Gaussian means and variances
significantly outperform that of updating means only for both
the EBW method and TR-based methods. When updating
both means and variances, the bounded TR method still yields
the best learning curve of the objective function. According

to the recognition performance summarized in Table II, the
TR-based methods, when updating both Gaussian means and
variances, can achieve about 0.25% absolute reduction in WER
performance comparing with that of updating Gaussian means
only. When updating both Gaussian mean and variances, the
bounded TR method gives about 30% relative WER reduction
over the MLE baseline, roughly 13% relative WER reduction
over EBW and about 2% reduction over the original TR method
without using penalized term. Moreover, we have also con-
ducted significance tests [15] for TR versus EBW, and bounded
TR versus EBW. Results show that the original TR is signifi-
cantly better than EBW (p = 0.035 for updating means only
and p = 0.038 for updating both means and variances), and the
bounded TR is also significantly better than EBW (p = 0.009
for updating means only and p = 0.012 for updating both
means and variances).

B. Switchboard 60-Hour Subset Task

In the Switchboard subset task, we randomly choose about
60 hours training data from the full A5train00 (about 265
hours in total) to build a set of cross-word state-tying tri-
phone HMMs. The used feature vectors are 39-dimension
PLP including delta and delta-delta features. Vocal tract length
normalization (VTLN) is applied to normalize features across
different speakers. We evaluate recognition performance on
two separate sets, namely Hub5 eval98 and evalOl sets. In our
experiments, we use the eval98 set as the development set to
tune various parameters in the algorithms and use the evalOl
set as an independent test set to evaluate the best models. The
NIST scoring software [15] has been used to measure word
error rates (WER). The WER of the MLE baseline is 47.9% on
eval98 and 37.2% on eval0l.

In the MMI training, both silence and garbage models are
kept unchanged in DT since statistics collected from lattices
for them are abnormally large, which severely affects conver-
gence of model training. In these experiments, we choose to use
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Fig. 6. Comparison of MMI objective function for different optimization
methods, trained on Switchboard 60-hour subset and evaluated on eval98.
(p = 500).

the best parameter values p = 500, & = 0.5 for the TR-based
methods and update both Gaussian means and variances at the
same time. From Fig. 6, we can see that the original TR method
is not doing as well as the EBW method in term of maximizing
the MMI objective function in this task while the bounded TR
method still yields the best learning curve among all and it con-
verges to much better value than other methods. From the recog-
nition results in Table II, we can also see that both TR-based
methods achieve slightly better recognition performance than
the EBW method on eval98, and the bounded TR method gives
the best result, which is 45.0% in WER, about 6.1% relative
WER reduction over the MLE baseline, and about 0.2% ab-
solute improvement from the conventional EBW method. The
same results are also observed on the independent evalOl test
set. Significance tests [15] conducted in this task have shown
that the bounded TR method significantly outperforms the EBW
method (p = 0.012) in evalOI but the original TR is not signif-
icantly better than EBW in evalO].

C. Switchboard h5train00 Full Set

In this section, we use the full h5train00 set (about 265
hours in total) as training data, which contains the Switchboard
(SWBI) corpus and Call Home English (CHE) data, to build
cross-word state-tying triphone HMMSs. The used features are
still 39-dimension PLPs including delta and delta-delta. In
these experiments, VTLN is first applied to normalize features
across different speakers and then the SAT technique [1] is
applied in the feature space to normalize for each conversion
side. We still use the eval98 set as the development set and the
standard NIST scoring software is still used to measure word
error rates (WER). The WER of the MLE baseline is 41.3%,
which is comparable with the best single pass performance
reported in this task.

We also keep both silence and garbage models unchanged
in the MMI training to avoid the model convergence problem
caused by abnormally large statistics collected for these two
models from lattices. We choose the best parameters p = 1000,
a = 0.7 for the both TR methods, and update both means and
variances at the same time. From Fig. 7, we have a similar
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MMIE Criterion of Different Methods
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Fig. 7. Comparison of MMI objective function for different optimization
methods, trained on Switchboard h5train00 set and evaluated on eval98.

observation as the SWB subset that the MMI objective function
of the original TR method is not as good as that of the EBW
method. However, the bounded TR method still gives a much
better growing curve that leads to a significantly improved con-
vergence point. In Table II, we also see that both TR methods
give slightly better recognition performance than the EBW
method on eval98. More specifically, the bounded TR method
yields the best recognition performance (39.2% in WER),
which is about 2.1% absolute improvement from the MLE
baseline and about 0.3% absolute gain over the EBW method.
Finally, we have evaluated the best models on the independent
evaluation set evalOl. From the results shown in Table II, we
can see that the bounded TR method still yields the best perfor-
mance (29.3% in WER) but the TR method is slightly worse
than EBW in this case. Significance tests [15] conducted in this
task have also shown that the bounded TR method significantly
outperforms the EBW method in a weak sense (p = 0.047) in
evalOl but the original TR is not significantly different from
EBW in evalO].

VI. CONCLUSION

This paper presents two trust region (TR) based parameter
optimization methods for MMI-based discriminative training of
HMMs in speech recognition. In these methods, we derive an
auxiliary function to approximate the original discriminative ob-
jective function, and imposes a locality constraint to ensure the
auxiliary function serves as a good local approximation as well
as a strict lower bound of the objective function during optimiza-
tion. More importantly, a fast global optimization algorithm pro-
posed in optimization theory can be used to optimize the de-
rived auxiliary functions very efficiently. Experimental results
on both WSJ-5k and Switchboard tasks have shown that the pro-
posed trust region (TR) method yields better recognition perfor-
mance than the conventional EBW method, in terms of both dis-
criminative criterion as well as recognition performance. In this
work, we only consider discriminative training based on max-
imum mutual information (MMI) training. As one direction of
possible future work, it is straightforward to extend the propose
TR methods to deal with other discriminative training criteria in
speech recognition, such as MCE, MPE/MWE, and LME.
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APPENDIX
DERIVATION OF THE GAP FUNCTION BETWEEN QQ AND F

In this appendix, we consider to derive the gap function be-
tween the original auxiliary function Q(-) and the MMI objec-
tive function Fyinvr ().

First, we express the MMI objective function as

FMMI(A):Z[]ng(Oer | A)—log Z (O, 51 | A)}

r s.EM,.

(41)
Based on the well-known Bayes’ theorem, p(l. |
O,,5-,A) = p(l,.,0.,8 | AN)/p(O;, S, | A), where 1,
denotes hidden state sequences of O,. in HMM A. The positive

term in (41), log p(O,., S, | A), can be represented as
logp(O;,5, | A)=logp(l,, O,,S, | A)— | O,,5,, A).
(42)

log p(1,.

If we take expectation on both sides of (42) based on proba-
bility distributions of p(l,. | O,., S,., A(™)), we have

> logp(Oy, S, | A) - p(L, | O, S, A™)
L.

= logp(l,, 0., S, | A) -p
= logp(l,
I,

It is easy to see that left-hand side of (43) equals to
logp(O,., S, | A) because of the sum-to-one property of
probability distributions, p(l, | O,,S,, A(™). Therefore, we
can decompose the positive term as follows:

= p(l | Or, S, A™)
L.

'I:Ing(lhOm Sr | A) - 10gp(1r | OT7S’I"7A):| .44

(1, 10,,8,,A™)

| Oy, S, A) - p(1, | Oy, S, A). (43)

log p(O.., S, | A)

Similarly, the same idea can be applied to the negative term
in (41), which can be decomposed as follows:

log > p > w,

$.EM, sprEM, 1,
-[logp(lh Oy, 5, | A) — log p(l, | O“Mr./A)] 45)

OTas’l“ | O’r‘aM’l‘7A(n))

After substituting (44) and (45) into the MMI objective func-
tion in (41), Fyivur can be presented as follows:

=22
: [logp(lr, Oy, 5:|A)~log p(1,|Oy, Sy, A)}

IDIPIFL
T sEM, 1.
'[Ing(1r7OT-,ST|A)_10gp(lr|Or7Mr>A>:|'

(46)

Favr(AJA™) = 1,0y, S, A7)

O, My, A
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In the MMI training, as shown in Section III-C , we normally
construct the following auxiliary function according to the well-
know Jensen’s inequality as follows:

Z Z
) |:10gp(1r70r757=|A) — logp(lr|Or75’r7A(n))}

-2 2 2
r s.eM, 1.

. [1ng(lT, OT’ ST|A) _logp(1r|OT: Mm A(n))] .
(47)

Q(AJAM) 1,:]0,, S, A(™)

L |Or, My, AC))

It is easy to see that the constant parts w.r.t A, i.e.,

RN
+Z 2.

r 1,eM,

(1,]0y, Sr, A - log p(1,|O,, Sy, A())
(1|0, M., A1) -log p(1,]O,., M,., A1)

is absorbed into C'; as in (16).
Finally, based on (46) and (47), the gap function G(A|A(™)
can be calculated as follows:
G(A[A™)
— Q(AJA™)

:;El;p(

— Favr(A|A™)

1T|OT-,ST>A(n))10 p(l,, | OT’S“A)

g p(l’l“ | OT‘, S’I“7A(n))

1, | O, M, A)
-5 S p(1]0n, My, A log p(le | On, My, A)
L p(1 [ Oy, M, ACY)
(43)
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