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% Probabilistic Model
% Set of N random variables that capture the outcome

in @ model:
V=(\,V,,...V.)

% Each variable can be assigned a value from a finite
set of different values:

{Xl’XZ”"’Xm}

% Random configuration
= A tuple of values where each value is assigned to a variable

X=(X,X5,..0, X))

V. =X,V, =X%X,,...,.V, =X




< In modeling our problem we assume that a sequence
of configurations is drawn from some random
source:

XV = (Xygs X Xy )
(2) =(X21,X22,---,X2n

(t) (th Xt2’ th)

% Probabilistic Modeling in NLP is a general framework
for modeling NLP problems using random variables,
random configurations, and finding effective ways of
reasoning about probabilities of these
configurations.




“) Computational Tasks

¢ Evaluation
= Compute probability of a complete configuration
* Simulation (aka Generation or Sampling)
= Generate random configurations
% Inference
= Marginalization
«  Computing probability of a partial configuration
= Conditioning
«  Computing conditional probability of a completion given an observation
= Completion
» Finding the most probable completion, given an observation
% Learning
= |Learning parameters of a model from data

*

*%




) Example: Spam Detection

% GOAL: Automatically detect whether an arbitrary
email message is spam or not

< Have 3 random variables in the model:

= Caps is "Y' if the message subject line does not contain
lowercase letter, ‘N’ otherwise

= Freeis "Y' if the word ‘free’ appears in the message subject line,
‘N’ otherwise

= Spam is Y’ if message is spam, and ‘N’ otherwise
< Mailbox is a random source
= Randomly select 100 messages
= Count how many times each configuration (each email) appears

Free | Caps | Spam | Number of messages
Y Y Y 20
Y Y N 1
Y N Y 3




% Last day
= Joint Distribution Model

» Specify complete joint probability distribution, i.e. the probability of each
complete configuration

= Drawbacks

* Memory cost to store table
* Running-time to do summations
* The sparse data problem in learning

% Today
= Fully Independent Model




Fully Independent Model

» Assume all variables are independent:
PV, =X,....V,=X)=PV,=x)--P(V, =X)
» This is an efficient model

= Small number of parameters: O(nm) m

= Represent each component of distribution separately
* Fetch F’(\/j = X) from lookup table with M parameters

BUT usually a too strong assumption!

= Very restricted form of joint distribution

= Silly model as far as real applications go, not very useful
Translated into SPAM example:

P(Free, Caps, Spam) = P(Free)-P(Caps)-P(Spam)

*

o
*

*




< Assume
= Caps, Free and Spam are independent
% Say have the following data:

% Estimate probability tables for independent

Example: Spam Detection

Free | Caps | Spam | Number of messages P
Y Y Y 20 0.20
Y Y N 1 0.01
Y N Y 5 0.05
Y N N 0 0.00
N Y Y 20 0.20
N Y N 3 0.03
N N Y 2 0.02
N N N 49 0.49

Total: 100 1.00

Any message
is Spam with
P=0.47 no

matter what
Free or Caps
is!

variables:
Free | P(Free) Caps | P(Caps) Spam | P(Spam)
20+142043 204542042
V| S0 e R0
N 20+?1J5§+49 — 0.74 N % =0.56 N oo = 0.53

MLE Learning




) Example: Spam Detection

< Say want to know the probability of configuration:

(Caps =Y, Free=N,Spam=N)

% Then the probability in fully independent model
evaluates to the following:

P(Free=Y,Caps= N,Spam = N) =
= P(Free=Y) -P(Caps= N) -P(Spam = N)@G -0.56 - 0.53

= 0.077168 = 0.08
Fetch from
lookup table




Computational Tasks

*» Evaluation
% Simulation (Sampling)
= Forevery ] =1,...,N independently sample X; according to
lookup table value of P(V;=X;)
= Conjoin (X1 o X ) to form a compete configuration

<+ Inference — Marginalization .
Sum-product
computation:

k is constant

P(Vi=wy, .., Vi=az)|= D o Y P(Vi=wy, oo Vi=ak, Vipi =4ki1s - Va=yn) ¥c7r summation
Y41 Yn

overy_{k+1}!

= > > PWVi=z)  P(Vi=zp)P(Vis1=vkr1) - P(Va=un)

Yi+1 yn
= PWVi=z1) - -P(Vi=xs m) [Z [ZP(Vn_yn)

)
<_yk+1 Y42 Yn
= P(WVi=uz) P(Vi=ux)

= — W)] [Zp(vn—yn)
_yk+ Yn

% Only have to lookup and multiply 1 numbers!




A computational Tasks

< Inference - Conditioning

P(Vk+1:yk+1j-- Vn—yn|V1 ,’,El,...,Vk;:iEk;)

P(Vlz.’ﬁh...,Vk:$k,Vk+1:yk+la"':Vn:yﬂ)
PVi=xq,...,Vi=x)
PV =24 )—PVi=7r)P(Vit1
P (Vi = z4)P{VE=T%)
= | PVir1=yr+1) - P(V=1yn)

< Only have to lookup and multiply N —K numbers




‘) Example: Spam Detection

% Inference — Completion

Yht1r - Yn argmax P(Vir1=vk+1, ..., Va=yn|Vi=21, ..., Vi =124)

g max P(Ver=gieer) - P(Va =)
Yk+4+15--:Yn

:@(VkH:ykﬂ)] T [arg max P(V, =y,)
1 Yn

% Only have to search through
i ) Sum-product
NN possible completions for each computation:
y_k is constant

of N — K variables separately P
overy_{k+1}!




Pros and Cons

% Joint Distribution Model vs. Fully Independent Model

Advantages ( Disadvantages

/- ™~ 4 ™\
) Efficient

O(nm) vs. O(m”)

Lot less to compute!

» Too strong assumption!
» Too little structure

) No sparse data problem = Usually does not model
accurately

- % - J

% Structured probability models are a compromise
solution between these two models

= Address the issue of sparse data
= Model important dependencies among random variables



% Structured Probability Model

% Assume that all variables are independent except
one distinguished variable - class variable

% Graphical representation:




Naive Bayes Model

+ Assume V, is the output variable andV,,...,V, are
‘nput variables

% Then classification problem is a conditional
probability computation problem:

P(Vl = 3}1|Vg = ZBQ,Vg = T3, .. .,Vn = .an)

% After applying Bayes theorem we obtain:

POV V.V, V) = P2 Ve Vo Vo) PO, V) POV, V). -V, [Vi)-POVL)|

P(V,.V,,....V.) WVSMVH)

The

Assume V21V31---1Vn are can be efficiently computed
conditionally independent and stored, and they

givenV, eliminate




‘ Computational Tasks

< Evaluation Holds always

P(-‘/lzivl,...,Vn::Bn):

Fetch from lookup
table

By Naive Bayes
assumption!




Computational Tasks

% Assume
= Free and Caps are input variables
= Spam is output variable

< Naive Bayes Assumption:

P(Free, Caps, Spam) = P(Spam) - P(Free|Spam) - P(Caps|Spam)

% Say we have the following data:

Free | Caps | Spam | Number of messages
Y Y Y 20
Y Y N 1
Y N Y 5
Y N N 0
N Y Y 20
N Y N 3
N N Y 2
N N N 49
Total: 100




‘Computational Tasks

% Compute the following tables:

Maximum Likelihood

Spam | P(Spam) Estimation (MLE)
Y 20+51-[|)-§0+2 — 0.47
N | HEEEE =053 The parameters of the
model are estimated
using a corpus
Free | Spam P(Free|Spam) Caps | Spam P(Caps|Spam)
~ 20420 ~
Y Y | soreiess ~ 0.5319 Y Y |5 Fa073 0.8511
1+0 ~ ~
Y N | 0 53 o~ 0.0189 Y N | - e 0.0755
N Y 20+5:20+2 ~ (0.4681 N Y 20+05:4290+2 ~ (0.1489
3449 ~ ~
N N 1+0¢3+49 ~ 0.9811 N N 14043449 ™~ 0.9245




A computational Tasks

% Say want to evaluate the following configuration:

P(Free=Y,Caps = N,Spam = N) =
P(Spam = N)-P(Caps = N|Spam = N) - P(Free =Y |Spam = N)

S~
I~

0.53-0.9245 - 0.0189 =~

P(Free =Y, Caps = N, Spam = N) = 0.00

0.0093

Fetch from lookup table

<+ Observe that in the Joint Distribution Model we had:

% This illustrates the fact that that the Naive Bayes
model is less amenable to the sparse data problem!




Computational Tasks

% Simulation:
= Configurations are sampled by:

- Sample the output variable based on its table
- Sample the input variables using corresponding conditional tables

% Inference - Marginalization

P(Vl :ﬂtl,...,Vk :mk) =
P(Vl — .’Bl)P(Vg — mz‘V1 — $1)P(T/3 — 333|V1 — :Bl) . e
P(Vk — mk\Vl — il’,’l)

If the partial configuration includes
PSS L) the output variable, then compute

marginal configuration as shown




‘ Computational Tasks

% Inference - Conditioning — Example

Want to find the probability of message being spam given

that header contains word “Free” and not all letters are
uppercase

P(S=N,F=Y,C = N)

P(S=N|F=Y,C=N)| =

Fetch from lookup table
By Naive Bayes

P(S=N,F=Y,C=N)= assumption!

— | P(S=N)P(F =Y|S = N)P(C = N|S = N) |

P(F=Y,C = N)

= 0.93-0.9245-0.0189 ~ 0.093




‘) Computational Tasks

% Inference - Conditioning — Example Continued

P(F=Y,C = N)C:)— By definition

— P(S=Y,F=Y,C=N)+P(S=N,F=Y,C=N)
~ |[P(S=Y)P(F=Y|S=Y)P(C =N|S=Y)H0.093
— 0.47-0.5319 - 0.1489 + 0.093

~ 0.0465

Fetch from lookup table

= Finally,

0.0093 .,

P(S=N|F=Y,C=N) =

0.0465




‘) Computational Tasks

% Inference — Completion -
P(S=s,F=Y,C=N)
arg max. P(S=s|F =Y,C = N)&arg max, =..
gmaX,_y ny P(S =5| )&arg FE=V C=N)

Does not depend on S

By Naive Bayes Assumption

P(S=s)P(F=Y|S=s)P(C=N|S=5)

s=Y s=N .
[A(S) = 0.0465J [A(S) _ O_OoggJ } arg max A(s) =Y




) Computational Tasks

% Learning
= Maximum Likelihood Estimation: The parameters are estimated
using a corpus
< Number of Parameters
= A Naive Bayes model with I variables Vl, e ,Vn Is described

with tables:
parameters constraints
table P(V1) m 1
table P(VQ‘Vl) m?2 m
table P(V3‘V1) m? m
table P(V,,|V1) m? m

sum m+(n—1m? 1+ (n—1m




% Joint Distribution Model vs. Fully Independent Model

Advantages

g
‘) Pros and Cons

)

) Efficient

Lot less to compute than Joint
Distribution Model!

) No sparse data problem

) Surprisingly good
performance (accuracy),
e.g. in text classification

2

O(mzn) vs.O(Nm) vs. O(m”)

~

\ Disadvantages

/

= Can be over-simplifying!

» Practically, dependencies
exist among attributes

= Cannot model more than one
“output” variable

%
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