CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Parsing and
Context Free

Grammars

Parsers, Top
Down, Bottom

Up, Leﬁ Corner,
Earley

Instructor: Nick Cercone - 3050 LAS - nick@cse.yorku.ca

=)

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Review
Language is a system of conventions — or rules
The rules aren’t the ones we were taught in school

The rules determine which strings of words are well-formed and
which are not

Instructor: Nick Cercone - 3050 LAS - nick@cse.yorku.ca

[X]

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Acceptability versus Grammaticality

In order to investigate the nature of grammar, we take on the

project of developing a precise account of the grammatical
knowledge we have

This account takes the form of a grammar, or set of rules that

Generates the set of sentences which are well-formed and does
Not generate ill-formed sentences (hence, generative grammar).

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Acceptability versus Grammaticality

In order to investigate the nature of grammar, we take on the
project of developing a precise account of the grammatical
knowledge we have.

This account takes the form of a grammar, or set of rules that
Generates the set of sentences which are well-formed and does
Not generate ill-formed sentences (hence, generative grammar).

Since we are trying to model the linguistic knowledge of speakers,

the set of sentences generated by our model should be the same
as those generated by the actual speaker’s grammar.

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Acceptability versus Grammaticality (continued)

However, we do not have direct access to that information. We
can ask speakers which sentences are acceptable, but
acceptability bears only an indirect relationship to grammaticality
because of a number of factors summed up by Chomsky’s
distinction between competence and performance.

Instructor: Nick Cercone - 3050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Competence versus Performance

Here are some examples of a grammar’s output to demonstrate
What we find acceptable is not simple:

That Sandy left bothered me
That that Sandy left bothered me bothered Kim.
That that that Sandy left bothered me bothered Kim bothered Bo.

In an important sense these are all grammatical, i.e., constructed
In accordance with the rules of a grammar, yet the last two sentences
seem unacceptable.

oy

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Competence versus Performance (continued)

We explain their unacceptability via extragrammatical factors, i.e.,
processing limitations. So we regard these all as “grammatical’,
and explain their reduced acceptability in terms of factors that
interact with grammar in language processing.

Here is another example:
The horse raced past the barn fell.

In this case there is a frequency bias of raced as past tense

finite verb. This sentence is also grammatical, but unacceptable
for extragrammatical reasons.

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Competence versus Performance (continued)

This is Chomsky’s famous distinction between competence and
performance. We develop competence grammars, and appeal
To interacting factors sometimes to provide a performance-
Based explanation of reduced acceptability.

Analogously, the relation of physical laws (the grammar of physics)
and friction (the interacting performance factors) illustrate how

our competence grammars idealize in much the same way as
other scientific theories.

On to parsing...

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca 8

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Some Preliminaries

 What is Parsing? - Two kinds of parse trees:
— Phrase structure
— Dependency structure

* Accuracy: handle ambiguity well
— Precision, recall, F-measure
— Percent of sentences correctly parsed

« Robustness: handle “ungrammatical” sentences or
sentences out of domain

* Resources needed: treebanks, grammars
 Efficiency: the speed
* Richness: trace, functional tags, etc.

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Types of Parsers

Use grammars?
 Grammar-based parsers: CFG, HPSG, ...

» Parsers that do not use grammars explicitly:
Ratnaparki’ s parser (1997)

Require treebanks?

e Supervised parsers
* Unsupervised parsers

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Where grammars come from:
e Built by hand
e Extracted from treebanks
e Induced from text

Instructor: Nick Cercone - 3050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics

Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Review of Grammars and languages

Grammar Language Automata Recognition | Dependency
Regular Regular Finite-state | linear strict local
grammar language automata
Context-free | Context-free | Pushdown polynomial | nested
grammar language automata
Context- Context- Linear NP- crossing
sensitive sensitive bounded complete
grammar language automata
Unstricted Recursively | Turing undecidable | arbitrary
grammar enumerable | machines

languages

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

BNF Example

a (context free) BNF grammar for a simple arithmetic expression.

<arithmetic expression>—<term> | <arithmetic expression> + <term> |
<arithmetic expression> - <term>

<term> — <factor> | <term> x <factor> | <term> / <factor>

<factor> — <primary> | <factor> 1 <primary>

<primary> — <variable> | <number> | (<arithmetic
expression>)

<variable> o <identifier> | <identifier> [<subscript list>]

<subscript list> — <arithmetic expression> | <subscripf list>,

<arithmetic expression>

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca 13

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

BNF Example

<arith exp>

ShiEa

<factor>

Instructor: Nick Cercone - 3050 LAS - nick@cse.yorku.ca

<primary>
<arith exp>
N
<arith exp> <ori’r[\ exp> <term>
<term> <term> <term> <factor>
<fo¢’ror> <fo<(:’ror> <factor> <factor> \
i i <primary> <primary>
<prirpory> <pnr‘nc1ry> <primary> p (ry rrl
i iable>
i iable> <variable> <vari \
<vori[3ble> <v0r(|oble> <vc|[|o | i - ?iﬁep \
<identifier> <identifier> <identifier> <|derr|ﬂer> i en? e
’ [(
. + s ¢ d :
= .

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

BNF Example
An equivalent (context free) BNF grammar for a simple arithmetic expression.

<arithmetic expression<term> | <arithmetic expression> 1 <term> |
<arithmetic expression> x <term> |
<arithmetic expression> + <term>

<term> — <primary> | <term> - <primary> |
<term> / <primary>
<primary> — <variable> | <number> |
(<arithmetic expression>)
<variable> — <identifier> | <identifier> [<subscripf list>]
<subscript list> — <arithmetic expression> |

<arithmetic expression> , <subscript list>

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca 15

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Parsing Algorithms

Top-down

Bottom-up

Top-down with bottom-up filtering
Earley algorithm

CYK algorithm

Instructor: Nick Cercone - 3050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Parsing Algorithms - Top Down

Start from the start symbol, and apply rules
Top-down, depth-first, left-to-right parsing

Never explore trees that do not result in S

=> goal-directed search

Waste time on trees that do not match input sentence.

Instructor: Nick Cercone - 3050 LAS - nick@cse.yorku.ca

17

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Parsing Algorithms - Bottom Up
e Use the input to guide
=> data-driven search
* Find rules whose right-hand sides match the current
nodes.
e \Waste time on trees that don’t result in S

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca 18

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Parsing Algorithms - Top-down parsing with bottom-up
look-ahead filtering Use the input to guide
e Both top-down and bottom-up generate too many useless trees.
e Combine the two to reduce over-generation
 Bis aleft-corner of Aif —see handout

e Left-corner table provides more efficient look-ahead

* Pre-compute all POS that can serve as the leftmost POS in the
derivations of each non-terminal category

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca 19

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Dynamic Programming (DP)
* DP:

— Dividable: The optimal solution of a sub-problem is
part of the optimal solution of the whole problem.

— Memorization: Solve small problems only once and
remember the answers.

« Example: T(n) = T(n-1) + T(n-2)

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Parsing with DP

* Three well-known CFG parsing algorithms:
— Earley algorithm (1970)
— Cocke-Younger-Kasami (CYK) (1960)
— Graham-Harrison-Ruzzo (GHR) (1980)

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Earley Algorithm

« Use DP to do top-down search

« A single left-to-right pass that fills out an array (called a
chart) that has N+1 entries.

* An entry is a list of states: it represents all partial trees
generated so far.

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Earley Algorithm - A state

A state contains:
— A single dotted grammar rule:
— [1, J]:
* i. where the state begins w.r.t. the input
* j: the position of dot w.r.t. the input

In order to retrieve parse trees, we need to keep a list of
pointers, which point to older states.

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca 23

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Earley Algorithm - Dotted rules
o Book ; that , flight,

S -->-+VP, [0,0]
— S begins position O
— The dot is at position 0, too.
— So, nothing has been covered so far.
— We need cover VP next.

NP --> Det « Nom, [1,2]
— the NP begins at position 1
— the dot is currently at position 2
— so0, Det has been successfully covered.
— We need to cover Nom next.

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Earley Algorithm - Parsing procedure

From left to right, for each entry chart[i]:

apply one of three operators to each state:
e predictor: predict the expansion
e scanner: match input word with the POS after the dot.
e completer: advance previous created states.

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

»
t

@ CSE6339 3.0 Introduction to Computational Linguistics
oo AN Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
S Winter Semester, 2014

Earley Algorithm - Predicator

* Why this operation: create new states to represent top-
down expectations

 When to apply: the symbol after the dot is a non-POS.
— ExX:S-->NP VP [i,|]
 What to do: Adds new states to current chart: One new
state for each expansion of the non-terminal
— EX:VP 2>V [,]]
VP > +«V NP [j,]]

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca 26

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Earley Algorithm - Scanner

 Why: match the input word with the POS in a rule
« When: the symbol after the dot is a POS

— ExX:VP --><V NP [Ii,j], word[]j]= "book”
« What: if matches, adds state to next entry

— Ex:V > book « [j,j+1]

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

»
t

@ CSE6339 3.0 Introduction to Computational Linguistics
oo AN Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
S Winter Semester, 2014

Earley Algorithm - Completer

 Why: parser has discovered a constituent, so we must
find and advance states that were waiting for this

« When: dot has reached right end of rule
— EX: NP -->DetNom = [1|,]]

« What: Find every state w/ dot at i and expecting an NP,
e.g.,VP-->V NP [h,i]

— Adds new states to current entry
VP>VNP-<[h,j]

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Earley Algorithm - Retrieving Parse Trees

* Augment the Completer to add pointers to older states
from which it advances

* To retrieve parse trees, do a recursive retrieval from a
complete S in the final chart entry.

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca 29

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)

Winter Semester, 2014

Earley Algorithm - Example

Book that flight
Rules:

1) S = NP VP
2)S 2> VP

3) VP = V NP
4) VP = VP PP
5) NP = NP PP
6) NP = N

7) NP =» Det N
8) PP = P NP

AN N N N N N N N

(9) N = book/cards/flight
(10) Det = that

(11) P = with

(12) V = book

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Earley Algorithm - Example
e Chart [0], word[O]=book

SO:
S1:
S2:
S3:
S4.
SH:
S6:
S7:

Start = .S [0,0] init pred
S=> NP VP [0,0] SO pred
S=> VP 0,0] SO pred
NP=>.NP PP [0,0] S1 pred

NP=>.DetN [0,0] S1 pred
NP=>.N [0,0] S1 pred

VP=> VNP [0,0] S2 pred
VP=> VP PP [0,0] S2 pred

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Earley Algorithm - Example
« Chart[1], word[1]=that

S8: N = book . [0,1 S5 scan
S9: V = book . [0,1 S6 scan
S10: NP = N. [0, 1] S8 comp [S8]

S11: VP=2>V. NP [0,1] S9 comp [S9]
S12:S=> NP.VP [0,1] S10 comp [S10]
S13: NP=NP. PP [0,1] S10 comp [S10]
S14: NP=>.NP PP [1,1] S11 pred

S15: NP=>.DetN [1,1] S11 pred

S16: NP=>.N [1,1 S11 pred

S17: VP=>.V NP [1,1] S12 pred

S18: VP=> VP PP [1,1] $S12 pred

S19: PP=>.P NP [1,1] S13 pred

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Earley Algorithm - Example

« Chart[2] word[2]=flight

S20: Det = that. [1,2] S15 scan

S21: NP =Det. N [1,2] S20 comp [S20]

« Chart[3]

S22: N=>flight. [2,3] S21 scan

S23: NP=>»Det N. [1,3] S22 comp [S20,S22]
S24: VP=> V NP. [0,3] S23 comp [S9,523]
S25: NP=>NP. PP [1,3] S23 comp [S23]
S26: S=2>VP. [0,3] S24 comp [S24]
S27: VP=>VP. PP [0,3] S24 comp [S24]
S28: PP=>.P NP [3,3] S25 pred
S29:start=>» S. [0,3] S26 comp [S26]

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Earley Algorithm - Retrieving parse trees

Start from chart[3], look for
start = S. [0,3]

S26

S24

S9, S23
S20, S22

Instructor: Nick Cercone - 3050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Earley Algorithm - Summary of Earley algorithm

 Top-down search with DP
« A single left-to-right pass that fills out a chart
« Complexity:
A: number of entries: O(N)
B: number of states within an entry: O(|G| x N)
C: time to process a state: O(|G| x N) = O(]G|? x N3)

Instructor: Nick Cercone - 2050 LAS - nick@cse.yorku.ca

CSE6339 3.0 Introduction to Computational Linguistics
Tuesdays, Thursdays 14:30-16:00 - South Ross 156 (new)
Winter Semester, 2014

Other Concluding Remarks

MISSING LINK
Man's a kind
of Missing Link,
fondly thinking
he can think..

Instructor: Nick Cercone - 3050 LAS - nick@cse.yorku.ca

