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Unification-­‐based  
approach  to  NLP    
  
final  parsing  and  semantics  
examples;  Unification-­‐based  
approach  to  NLP;  bits  of  
historL,  First-­‐order  predicate  
logic;  unification;  Resolution    
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CFG Parsing example 
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A top-down, depth-first, left to right parser 
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A top-down, depth-first, left to right parser, example (1) 
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A top-down, depth-first, left to right parser, example (2) 
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A top-down, depth-first, left to right parser, example (3) 
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A top-down, depth-first, left to right parser, example (3) 
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Big Problem: PP attachment ambiguity 
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Solutions 
 
•  Use a Probabilistic Parser (covered later in class) 
•  Use semantics 



 
CSE6339 3.0 Introduction to Computational Linguistics 

Mondays, Wednesdays 10:00-11:20 – LAS 3033 
Winter Semester, 2014 

 

Inst%&ctor:  Nick  Cercone  -­‐  3050  CSEB  -­‐  nick@cse.yorku.ca  
  

10  

Example again (w/Earley parser) “Book that flight” 
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Example again (w/Earley parser) “Book that flight” (2) 
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Example again (w/Earley parser) “Book that flight” (3) 
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Example again (w/Earley parser) “Book that flight” (4) 
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Parsing with Features 
 
3 views of a context-free rule 
•  generation (production):  S → NP VP 
•  parsing (comprehension):  S ← NP VP 
•  verification (checking):  S = NP VP 

•  Today you should keep the third, declarative perspective in mind. 

•  Each phrase has  
–  an interface (S) saying where it can go 
–  an implementation (NP VP) saying what’s in it 

•  To let the parts of the tree coordinate more closely with one another, enrich 
the interfaces:  

 S[features…] = NP[features…] VP[features…] 
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Example 
Verb → thrills 
VP→ Verb NP 
S → NP VP 
 

NP Verb 

VP NP 

S 

A roller coaster        thrills          every teenager 
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3 common ways to use features  
 
morphology of a single word:  
Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills 
 
projection of features up to a bigger phrase  
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP 

provided α is in the set TRANSITIVE-VERBS 
 
agreement between sister phrases: 
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…]  
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3 Common Ways to Use Features 
 

Verb[head=thrill, tense=present, num=sing, person=3,…] → thrills 
VP[head=α, tense=β, num=γ…] → V[head=α, tense=β, num=γ…] NP 
S[head=α, tense=β] → NP[num=γ,…] VP[head=α, tense=β, num=γ…] 

NP Verb 

VP NP 

S 

A roller coaster thrills every teenager 

(generation 
perspective) 
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Uses of Grammar 
 
•  Prescriptive - Identify speaker’s socioeconomic class & 

education level; Identify level of formality of a particular 
usage 

•  Descriptive - Understand how people produce & 
understand language; Identify similarities & differences 
across languages; Development of language technologies 
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Competence vs. Performance 
 
The Distinction 
•  Competence - knowledge of language 
•  Performance - how the knowledge is used 
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Acceptability vs. grammaticality 
 
•  A sentence is acceptable if native speakers say it sounds 

good. 
•  A sentence is grammatical (with respect to a particular 

grammar) if the grammar licenses it. 
•  Linguists are sometimes sloppy about the difference. 
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The Generative Revolution 
 
•  Noam Chomsky’s work in the 1950s radically changed 

linguistics, making syntax central. 
•  Chomsky has been the dominant figure in linguistics ever 

since 
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Main Tenets of Generative Grammar 
 
•  Grammars should be formulated precisely and explicitly 
•  Languages are infinite, so grammars must be tested 

against invented data, not just attested examples. 
•  The theory of grammar is a theory of human linguistic 

abilities. 
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Some of Chomsky’s Controversial Claims 
 
•  The superficial diversity of human languages masks their 

underlying similarity. 
•  All languages are fundamentally alike because linguistic 

knowledge is largely innate. 
•  The central problem for linguistics is explaining how 

children can learn language so quickly and easily. 
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Relationship of Some Syntactic Theories 
Other Theories   Early Transformational Grammar 

     (1955-1964) 
 

              Standard Theory 
     (1964-1967) 

 
     GB        GPSG  Realistic TG      Generative Semantics 
(1981-1993)  (1979-1985)  (1978-1980)   (1966-1975) 
 
    Other       HPSG       LFG    Other 

   (1986-present)  (1980-present) 



 
CSE6339 3.0 Introduction to Computational Linguistics 

Mondays, Wednesdays 10:00-11:20 – LAS 3033 
Winter Semester, 2014 

 

Inst%&ctor:  Nick  Cercone  -­‐  3050  CSEB  -­‐  nick@cse.yorku.ca  
  

25  

Logic Refresher 
 

 Propositional Calculus 
 Extensively developed by Whitehead and Russell in their early 20th 
century classic Principia Mathematica, this system is also known as 
propositional logic, sentential calculus, and (informally) as symbolic 
logic. 

 The basic entities, or primitives, in the propositional calculus are 
propositions (sentences) which are symbolized p, q, r, s, ... A 
proposition symbol stands for an assertion (the sky is blue, it is raining, 
x=y) which may be true (T) or false (F). Propositions may be combined 
into more complex assertions by the use of operators, analogous to 
the familiar arithmetic operators of addition, multiplication, and so on. 
These logical connectives, however, combine propositions into logical 
expressions whose truth or falsity is a function of the truth value (T or 
F) of each component proposition.  
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Logic Refresher 
 

 Propositional Calculus (cont.) 
 In general, logical connectives map combinations of n propositions onto 
the set {T, F}. When n=1, the only mapping of interest reverses the truth 
variable of a proposition. We symbolize this negation operator with a 
minus sign and read -p (or ~p) as not p. 

 When n=2 (which is as high as we need to go) there are 16 possible 
binary logical connectives (comprising all the distinct ways truth values 
can be assigned to the four possible pairs of proposition values). The 
table below shows the mappings for the conjunction (p&q, p and q), 
disjunction (pvq, p or q), and implication (p→q, p implies q) operators. 
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Logic Refresher 
 

 Propositional Calculus (cont.) 
 
 
 
 
 
 

 A formal means of determining whether more complex expressions are 
constructed properly is given by the following recursive definition of well-
formed-formulas (wffs): 
1.  A proposition is a wff. 
2.  If A and B are wffs, then so are (-A), (A&B), (AvB), and (A→B). 
3.  There are no other wffs. 

 

p q p&q  pvq  p_ q  
T T T T T 
T F F T F 
F T F T T 
F F F F T 
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Logic Refresher 
  
 Predicate Calculus extends propositional calculus permitting individuals, 
relations between individuals, and properties of individuals and sets of 
individuals. We continue to denote propositions by p, q, r, ... and to use the 
same set of unary and binary logical connectives. 
  

 To those structures we add individual constants, denoted a, b, c, ..., which 
symbolically identify particular items of the domain of discourse, D (e.g., 
people, numbers, days of the week). We use the last letters of the alphabet (z, 
y, x, ...) to denote individual variables which may range over all the individuals 
in D. Functions of one or more variables and/or constants will be denoted f, g, 
h, ... and will map objects or groups of objects in D into other objects in D. 
Thus in the domain of numbers we might represent negation by g(x), addition 
by f(x,y), and three way multiplication by h(x,y,z), so that h(g(2), 6, f(3,1)) 
would denote -48. Any expression of this sort, which evaluates to an object or 
set of objects in D, is known as a term. Defined recursively, a term is (1) a 
constant, (2) a variable, or (3) a function of terms. 



 
CSE6339 3.0 Introduction to Computational Linguistics 

Mondays, Wednesdays 10:00-11:20 – LAS 3033 
Winter Semester, 2014 

 

Inst%&ctor:  Nick  Cercone  -­‐  3050  CSEB  -­‐  nick@cse.yorku.ca  
  

29  

Logic Refresher  
 

 Predicate calculus gets its name from the entities used to describe or relate 
terms. Predicates are denoted P, Q, R, ... and map terms onto the truth values 
T and F. Thus, if D is people, P(a) might assert that individual a has red hair, 
while R(c,b) might claim that b is a sibling of c. Any predicate of terms (or 
simple proposition) in the predicate calculus is known as an atomic formula. 
 The last group of PC entities consists of two quantifiers. The universal 
quantifier, denoted (x) and read for all x, when applied to a formula asserts 
that the formula is true for all possible substitution instances of the variable x 
(the entire domain D). The existential quantifier, denoted (∃x) and read there 
exists an x, asserts that the formula is true for at least one of the possible 
values of x. In general a quantifier does not apply to all occurrences of its 
variable in a formula but only to those which fall within its range or scope 
(delimited if necessary by appropriate parentheses). Such variables are said 
to be bound by the quantifier while other occurrences of the same variable 
may be free of quantification. 
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Logic Refresher 
 We define recursively the well-formed-formulas (wffs) of the PC, as follows: 

1.  Any atomic formula is a wff. 
2.  If A and B are wffs then so are (-A), (A&B), (AvB), and (A→B). 
3.  If A is a wff and x is a (free) variable in A, then ((x)A) and ((∃x)A) are wffs. 
4.  There are no other wffs. 

 Quantifiers are to be evaluated first, along with negations. Thus the scope of 
(x) in (x)-P(x)vQ(x) is just -P(x); the x in Q(x) is a free variable. 

 Interpretation of PC formulas requires specification of the domain, D, an 
assignment of elements of D to individual constants, and assignments of 
meanings (mappings) with respect to D to all functions and predicates.  
 Just as for the propositional calculus, PC formulas are classed as valid (true 
for all interpretations), satisfiable (true for at least one interpretation) and 
inconsistent (true for no interpretations). Two predicate formulas are 
equivalent ⇔ they have identical truth values under all interpretations. 
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Prenex normal form 
 

 A useful type of formula equivalent to any predicate calculus formula is 
its prenex normal form. In this form all quantifiers have been swept to 
the front of the formula, so that each of them has all the rest of the 
formula (called the matrix) as its scope. The most awkward aspect of 
converting formulas to prenex normal form can be moving negation 
through quantifiers where the following (sensible) equivalences apply: 

   -(x)A=(∃x)-A,   -(∃x)A=(x)-A   
   

 Since conversion to prenex normal form is an implicit step in preparing 
formulas for resolution, we will illustrate the method next. 
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Clause form 
  
 In 1965 the logician J. A. Robinson reported the 
development of a new inference rule for the predicate 
calculus. He also proved that his resolution principle was 
sound (producing only valid wffs) and complete (producing 
all valid wffs). While not especially convenient or intuitive 
for people, the resolution principle is ideally suited to 
computer implementation and forms the basis for almost 
all current research in theorem proving, logic programming 
and computational linguistics. 
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Unification & Resolution 
 A proof that some formula W logically follows from a set of formulas S is 
equivalent to the claim that every interpretation satisfying S also satisfies W. If 
such is the case then no interpretation can satisfy the union of S and -W. 
Resolution theorem proving tries to show that union is unsatisfiable by 
deriving a special formula called the null clause or resolvent from it. The 
method is thus a special form of proof by contradiction. 
 Before resolution theorem proving can be applied to a theorem, preliminary 
steps must be executed. Premises and the conclusion to be proved stated in 
English must be expressed in PC. Second, the conclusion to be proved must 
be negated. Third, all formulas including the negated conclusion must be 
converted to clause form, a formula in prenex normal form with no quantifiers 
shown because existential quantifiers have been eliminated and all variables 
are assumed to be universally quantified. The matrix of a clause consists 
solely of disjunctions of atomic formulas and their negations, known 
collectively as literals. Conversion to clause form is by the 8 algorithm. 
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The Eight-Step Algorithm 
Using the unusually complex formula 

  (x)[P(x)→[(y)Q(x,y)&-(y)(P(y)→R(f(x,y)))]].   []  
   

 Step 1: Eliminate Implication Signs - Using p→q = -pvq, [] becomes 

(x)[-P(x)v[(y)Q(x,y)&-(y)(-P(y)vR(f(x,y)))]] 

 Step 2: Reduce Scopes of Negation Signs - We then use equations p&q = -(-
pv-q), pvq = -(-p&-q) and -(x)A=(∃x)-A, -(∃x)A=(x)-A to reduce the scopes of 
negation signs to single predicates: 

(x)[-P(x)v[(y)Q(x,y)&(∃y)(P(y)&-R(f(x,y)))]] 
 Step 3: Standardize Variables - Now we rename quantified variables, if 
necessary, so that each quantifier has a unique variable: 

(x)[-P(x)v[(y)Q(x,y)&(∃z)(P(z)&-R(f(x,z)))]] 
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The Eight-Step Algorithm 
Using the unusually complex formula 

  (x)[P(x)→[(y)Q(x,y)&-(y)(P(y)→R(f(x,y)))]].   []  
   

 Step 4: Eliminate Existential Quantifiers - For all such quantifiers which do not 
fall within the scope of universal quantifiers we may simply replace (∃w)P(w) 
with P(a) where 'a' is a constant whose existence the quantifier asserts. In a 
case like (v)(∃w)Q(w), there is some (possibly distinct) w for every v, so we 
must write (v)Q(h(v)) where h is a function that selects the w which exists for 
each v. Constants and functions introduced in this step must be new to the 
formula. [functions introduced here are called Skolem functions]. Our example 
becomes: 

(x)[-P(x)v[(y)Q(x,y)&(P(g(x))&-R(f(x,g(x))))]] 

•  Step 5: Convert to Prenex Form - This conversion is accomplished by moving 
all (universal) quantifiers to the front of the formula: 

•  (x)(y)[-P(x)v[Q(x,y)&P(g(x))&-R(f(x,g(x))))]] 
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The Eight-Step Algorithm 
Using the unusually complex formula 

  (x)[P(x)→[(y)Q(x,y)&-(y)(P(y)→R(f(x,y)))]].   []  
   

 Step 6: Put Matrix in Conjunctive Normal Form - Converting from prenex form 
to conjunctive normal form yields 

•  (x)(y)[(-P(x)vQ(x,y))&(-P(x)vP(g(x)))&(-P(x)v-R(f(x,g(x))))] 

•  Step 7: Eliminate Universal Quantifiers - Dropping the universal quantifiers 
(we assume that all variables at this point are universally quantified) leaves us  

•  [(-P(x)vQ(x,y))&(-P(x)vP(g(x)))&(-P(x)v-R(f(x,g(x))))] 

•  Step 8 :Eliminate & Signs - Eliminate the conjunctions by separating the 
formula into distinct clauses, each of which will be a disjunction of literals: 

•  -P(x)vQ(x,y)          -P(x)vP(g(x))          -P(x)v-R(f(x,g(x))) 
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Unification Algorithm 
•  Given a set of clauses derived from the premises and negated 

conclusion of a theorem, the resolution principle generates new 
clauses by resolving pairs of clauses in the set. These new clauses 
are added to the set and may be used in the generation of further 
resolvents. If the original set of clauses is unsatisfiable (the theorem is 
provable) resolution will eventually produce a clause containing no 
literals, the so-called null resolvent. 

•  To produce a resolvent of two available clauses we require that at 
least one atomic formula appear with opposite signs in the two parent 
clauses. The resolvent then consists of a disjunction of all other literals 
in both parent clauses, after removal of the literal(s) differing only in 
sign. Thus from the clauses -P(x)vR(x) and -R(x)v Q(x) we may infer 
the resolvent -P(x)vQ(x) by combining the literals left after removing 
R(x) and -R(x).  
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Unification Algorithm 
•  In the example the coincidental appearance of R(x) and -R(x) in the parent 

clauses was fortunate. Usually it is necessary to perform substitutions in the 
parent clauses. The process of finding suitable substitutions is called 
unification. If a set of clauses can be unified (i.e., can produce resolvents), a 
procedure called the unification algorithm can be used to find the simplest 
substitution (or most general unifier) that does the job. The details of 
unification are given now. 

•  The terms of a literal can be variable letters, constant letters, or expressions 
consisting of function letters and terms. A substitution instance of a literal is 
obtained by substituting terms for variables in the literal. Thus four instances 
of P(x,f(y),b) are 

•  P(z,f(w),b) 
•  P(x,f(a),b) 

•  P(g(z),f(a),b) 
•  P(c,f(a),b) 
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Unification Algorithm 
•  The first instance is called an alphabetic variant of the original literal because 

we have merely substituted different variables for the variables appearing in 
P(x,f(y),b). The last of the four instances mentioned above is called a ground 
instance or atom since none of the terms in the literal contains variables. 

•  In general, we can represent any substitution by a set of ordered pairs θ = 
{(t1,v1), (t2,v2),..., (tn,vn)}. The pair (ti,vi) means that the term ti is substituted for 
variable vi throughout. We insist that a substitution be such that each 
occurrence of a variable have the same term substituted for it; that is i≠j 
implies vi≠vj, i,j=1,...,n. The substitutions used above in obtaining the four 
instances of P(x,f(y),b) are  

•  α = {(z,x), (w,y)}  
•  β = {(a,y)}  
•  γ = {(g(z),x), (a,y)}  
•  δ = {(c,x), (a,y)} 
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Unification Algorithm 
•  To denote a substitution instance of a literal P using a substitution θ, we write 

P:θ. Thus P(z,f(w),b) = P(x,f(y),b):α. The composition of two substitutions α 
and β is denoted by α|β and is the substitution obtained by applying β to the 
terms of α and then adding any pairs of β having variables not occurring 
among the variables of α. Thus 

•  {(g(x,y),z)}{(a,x),(b,y),(c,w),(d,z)}={(g(a,b),z),(a,x),(b,y),(c,w)} 
•  It can be shown that applying α and β successively to a literal P is the same 

as applying α|β to P, that is, (P:α):β = P:α:β. It can also be shown that the 
composition of substitutions is associative: 

•  (α|β)|γ = α|(β|γ) 

•  If a substitution θ is applied to every member of a set {Li} of literals, we denote 
the set of substitution instances by {Li}:θ. We say that a set {Li} of literals is 
unifiable if there exists a substitution q such that L1:θ = L2:θ = L3:θ = etc. In 
such a case θ is said to be a unifier of {Li} since its use collapses the set to a 
singleton.  
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Unification Algorithm 
 As an example, θ = {(a,x), (b,y)} unifies {P(x,f(y),b), P(x,f(b),b)} to yield 
{P(a,f(b),b)}. 

•  Although θ = {(a,x), (b,y)} is a unifier of the set {P(x,f(y),b), P(x,f(b),b)}, 
in some sense it is not the simplest unifier. We really did not have to 
substitute a for x to achieve unification. The most-general (or simplest) 
unifier [mgu] λ of {Li} has the property that if θ is any unifier of {Li} 
yielding {Li}:θ, then there exists a substitution δ such that {Li}:λ|δ = 
{Li}:θ. Furthermore, the common instance produced by a most-general 
unifier is unique except for alphabetic variants. 

•  There is an algorithm called the unification algorithm that produces a 
most-general unifier λ for any unifiable set {li} of literals and reports 
failure when the set is not unifiable. 
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Unification Algorithm 
 The algorithm starts with the empty substitution and constructs, step-by-step, a most 
general unifier if one exists. Suppose at the kth step, the substitution so far produced is 
λk. If all the literals in the set {Li} become identical after employing the substitution λk on 
each of them then λ = λk is a most-general unifier of {Li}. Otherwise we regard each of 
the literals in {Li}: λkk as a string of symbols and detect the first symbol position in which 
not all of the literals have the same symbol. We then construct a disagreement set 
containing the well-formed expressions from each literal that begins with this symbol 
position. (A well-formed expression is either a term or a literal). Thus, the disagreement 
set of 

{P(a,f(a,g(z)),h(x)),P(a,f(a,u),g(w))} is {g(z),u} 

 Now the algorithm attempts to modify the substitution λk in such a way as to make two 
elements of the disagreement set equal. This can be done only if the disagreement set 
contains a variable that can be set equal to one of its terms. (If the disagreement set 
contains no variables at all, {Li} cannot be unified. For example, we note that at the first 
step of the algorithm the disagreement set may be {Li} itself, and then certainly then no 
element is a variable). 
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Unification Algorithm 
 Let sk be any variable in the disagreement set and let tk be a term 
(possibly another variable) in the disagreement set such that tk does 
not contain sk. (If no such tk exists, then again {Li} is not unifiable). 
Next we create the modified substitution λk+1 = λk{(tk,sk)} and perform 
another step of the algorithm. 

 It can be proven (Robinson, 1965) that the unification algorithm finds a 
most-general unifier of a set of unifiable literals and reports failure 
when the literals are not unifiable. 

 As examples, we list the most common substitution instances (those 
obtained by the mgu) for a few sets of literals. 
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Unification Algorithm 
 
 
 
 
 

 We consider the legal substitutions that may be made in a pair of clauses 
without altering their truth values. In order to avoid confusion (and error) from 
coincidentally identical variable names, substitution should be applied to 
clauses which have no variable names in common. If this is not already the 
case we simply rename some or all of the variables in one of the clauses. Now 
since all variables are understood to be universally quantified, each specifies 
any object in the domain. We can therefore substitute any new or existing 
variable name for all of the occurrences of any given name in order to bring 
literals in the clauses into closer correspondence. 

Set Of Literals Most-general Common  
Substitution Instances 

{P(x), P(a)} P(a) 

{P(f(x),y,g(y)), P(f(x),z,g(x))} P(f(x),x,g(x)) 
{P(f(x,g(a,y)),g(a,y)),P(f(x,z),z)} P(f(x,g(a,y)),g(a,y)) 
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Unification Algorithm 
 We can substitute any constant or function for all the instances of any variable in the 
two clauses, since such substitutions simply limit the range to one or more of the objects 
for which the variable stood. We cannot however make any substitutions which would 
change or increase the identified set of objects, since such substitutions could alter the 
truth value of the clause. Thus we may not substitute variables for functions or 
constants, nor may we replace any constant or function with any other constant or 
function. 

 To illustrate how substitution can be used in producing resolvents, consider the clauses 

   (1)  -P(a) v Q(f(x),y,c) v R(y) 
  (2)  S(x,y) v P(x) v -Q(y,b,c). 
 Renaming variables, by application of primes to variables in (2) which also happen to 
appear in (1), gives us 
  (2a)  S(x',y') v P(x') v -Q(y',b,c). 

 Now we can substitute a for x' in (2a) producing 

(2b)  S(a,y') v P(a) v -Q(y',b,c). 
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Unification Algorithm 
 which can be resolved with (1) to give 

 (3)   Q(f(x),y,c) v R(y) v S(a,y') v -Q(y',b,c) 

 Alternatively we might substitute b for y in (1) and f(x) for y’ in (2a), 
giving the different resolvent 

 (4)   -P(a) v R(b) v S(x',f(x)) v P(x') 

 Thus different substitutions can give different resolvents. It should also 
be noted that (3) and (4) can be further resolved against the original 
formulas, with appropriate further substitutions. 
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Unification Algorithm - example 
 Consider the following theorem: If there are no compassionate 
professors, and if all competent professors are compassionate, then 
no competent professor exists. If we let S(x) indicate that x is 
compassionate, and P(x) that x is competent, then the predicate 
calculus formulas for the premise are 
 (1)   -(∃x)S(x)  
 (2)   (y)(P(y)→S(y)), 
 while the denial of the conclusion is - -(∃z) (P(z)) or just 
 (3)   (∃z)(P(z)). 
 (Note that we have avoided duplication of variable names to reduce 
the necessity for renaming prior to substitution.) In clause form, 
  (1') -S(x)  (2') -P(y) v S(y)   (3') P(a) 
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Unification Algorithm - another example 
 Substitution can be used in producing resolvents; consider the two clauses 

  (1)   -P(a) v Q(f(x),y,c) v R(y) 
  (2)   S(x,y) v P(x) v -Q(y,b,c). 

 Renaming variables, by application of primes to variables in (2), which also 
happen to appear in (1), gives us 

  (2a)   S(x',y') v P(x') v -Q(y',b,c). 
 Now we can substitute a for x' in (2a) producing 

  (2b)   S(a,y') v P(a) v -Q(y',b,c). 

 which can be resolved with (1) to give  

  (3)   Q(f(x),y,c) v R(y) v S(a,y') v -Q(y',b,c) 
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Unification Algorithm - another example 
 Alternatively, we might substitute b for y in (1) and f(x) for y’ in (2a), 
giving the different resolvent 

  (4)   -P(a) v R(b) v S(x',f(x)) v P(x') 

 Thus different substitutions can give different resolvents. It should 
also be noted that (3) and (4) can be further resolved against the 
original formulas with appropriate further substitutions. 

 With substitution of x for y in (2'), resolution of (1') and (2') yields just 
-P(x). Substituting a for x in this resolvent and using (3') as the other 
parent yields the null resolvent, proving the theorem. 
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Answer extraction using unification 
  
 Consider the following: If Marcia goes wherever John goes, and John is at 
school, where is Marcia? The facts might simply be translated into the set 
S of wffs 

 1. (x){AT(John,x) → AT(Marcia,x)}  and  2. AT(John,school) 

 where the predicate letter AT is interpreted obviously. The question where 
is Marcia? could be answered if we could first prove that the wff 

    (∃x)AT(Marcia,x) 

 followed from S and could then find an instance of the x that exists. If the 
question can be answered from the facts given, the wff created in this 
manner will logically follow from S. After obtaining a proof, we then try to 
extract an instance of the existentially quantified variable to serve as an 
answer.  
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Answer extraction using unification 
 The proof is obtained by first negating the wff to be proved, adding 
this negation to the set S, converting all of the members of this 
enlarged set to clause form, and then, by resolution, showing that 
this set of clauses is unsatisfiable. A refutation tree for our example 
is shown in Figure 3-1. The wff to be proved is called the conjecture 
and the clauses resulting from the wffs in S are called axioms. Note 
that the negation of (∃x)AT(Marcia,x) produces (x)[-AT(Marcia,x)] 
whose clause form is simply -AT(Marcia,x). 
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Answer extraction using unification 
 
 
 
 
 
 
 

 Next, we must extract an answer to the question Where 
is Marcia? from this refutation tree. The process for doing 
so in this case is as follows: 
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Answer extraction using unification 
  

 1.  Append to each clause arising from the negation of the  
 conjecture its own negation. Thus -AT(Marcia,x) becomes the 
 tautology -AT(Marcia,x)vAT(Marcia,x). 

 2.  Following the structure of the refutation tree, perform the same 
 resolution as before until some clause is obtained at the root. In 
 our example this process produces the proof tree shown in 
 the figure below with the clause AT(Marcia,school) at the root. 

 3.  Convert the clause at the root back to the conventional  
 predicate calculus form and use it as an answer statement. This 
 wff can then be translated back into English, say, as an answer 
 to the question. In our example it is obvious that   
 AT(Marcia,school) is the appropriate answer to the problem 
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Answer extraction using unification 
  



 
CSE6339 3.0 Introduction to Computational Linguistics 

Mondays, Wednesdays 10:00-11:20 – LAS 3033 
Winter Semester, 2014 

 

Inst%&ctor:  Nick  Cercone  -­‐  3050  CSEB  -­‐  nick@cse.yorku.ca  
  

55  

Concluding Remarks 
 
 

Out of time 
 

My old clock used to tell the time 
 

and subdivide diurnity; 
 

but now it's lost both hands and chime 
 

and only tells eternity. 


