Introduction to HPSG Class 1: Clause Structure, Hierarchical Organization of Knowledge, Lexical Regularities

Stefan Müller

Ivan A. Sag

Theoretical Linguistics/Computational Linguistics
Fachbereich 10
Universität Bremen

Linguistics & CSLI Stanford University

Stefan.Mueller@cl.uni-bremen.de

sag at csli dot stanford dot edu

July 2, 2007

Course Page and Material

 Web page with the slides and handouts of the three lectures: http://hpsg.stanford.edu/LSA07/

Course Page and Material

- Web page with the slides and handouts of the three lectures: http://hpsg.stanford.edu/LSA07/
- The analyses are implemented.

A CD rom image which contains the grammar development software and example grammars for German, Chinese, and Maltese can be downloaded from:

http://www.cl.uni-bremen.de/Software/Grammix/

If you have a writable CD, we can burn it here.

Outline of the Whole Course

Class 1 Feature structures, the linguistic sign, basic clause structures, phrasal projection, the hierarchical organization of lexical and phrasal information.

Outline of the Whole Course

Class 1 Feature structures, the linguistic sign, basic clause structures, phrasal projection, the hierarchical organization of lexical and phrasal information.

Class 2 Lexical regularities, constituent order variation (within and across languages), complex predicates via 'argument composition'.

Outline of the Whole Course

- Class 1 Feature structures, the linguistic sign, basic clause structures, phrasal projection, the hierarchical organization of lexical and phrasal information.
- Class 2 Lexical regularities, constituent order variation (within and across languages), complex predicates via 'argument composition'.
- Class 3 The feature-based analysis of long distance dependencies (in cross-linguistic perspective), island constraints.

Outline

- Motivation & Psychological Reality
- General Overview of the Framework
- Valency
- Head Argument Structures
- Semantics
- Hierarchical Organization of Knowledge

└ Motivations for HPSG

Motivations for HPSG

• Increased Precision

└ Motivations for HPSG

- Increased Precision
- Framework for Integration

Motivations for HPSG

- Increased Precision
- Framework for Integration
- Declarative, Constraint Satisfaction System

Motivations for HPSG

- Increased Precision
- Framework for Integration
- Declarative, Constraint Satisfaction System
- Grammars that Scale Up

Motivations for HPSG

- Increased Precision
- Framework for Integration
- Declarative, Constraint Satisfaction System
- Grammars that Scale Up
- Grammars that Can be Implemented

└ Motivations for HPSG

- Increased Precision
- Framework for Integration
- Declarative, Constraint Satisfaction System
- Grammars that Scale Up
- Grammars that Can be Implemented
- Psycholinguistic Plausibility

Important Moments in the History of Linguistics – I

Chomsky (1968) speaking of early psycholinguistic findings in relation to the 'derivational theory of complexity' (DTC):

The results show a remarkable correlation of the amount of memory and number of transformations. (Chomsky, 1968)

Important Moments in the History of Linguistics – II

Fodor, Bever and Garrett (1974):

Experimental investigations of the psychological reality of linguistic structural descriptions have [. . .] proved quite successful.

Important Moments in the History of Linguistics – III

Fodor, Bever and Garrett (1974):

Investigations of DTC...have generally proved equivocal. This argues against the occurrence of grammatical derivations in the computations involved in sentence recognition.

Important Moments in the History of Linguistics

• HPSG as response to the Fodor, Bever, Garrett dilemma

- HPSG as response to the Fodor, Bever, Garrett dilemma
- HPSG recognizes the 'linguistic structural descriptions' whose psychological reality is established, e.g. phonological representations, semantic representations.

- HPSG as response to the Fodor, Bever, Garrett dilemma
- HPSG recognizes the 'linguistic structural descriptions' whose psychological reality is established, e.g. phonological representations, semantic representations.
- HPSG defines these descriptions via structural definitions and 'interface constraints' (Jackendoff), thus eliminating grammatical derivations in FBG's sense.

Outline

- Motivation & Psychological Reality
- General Overview of the Framework
- Valency
- Head Argument Structures
- Semantics
- Hierarchical Organization of Knowledge

• lexicalized (head-driven)

- lexicalized (head-driven)
- sign-based (Saussure, 1916)

- lexicalized (head-driven)
- sign-based (Saussure, 1916)
- typed feature structures (lexical entries, phrases, principles)

- lexicalized (head-driven)
- sign-based (Saussure, 1916)
- typed feature structures (lexical entries, phrases, principles)
- multiple inheritance

- lexicalized (head-driven)
- sign-based (Saussure, 1916)
- typed feature structures (lexical entries, phrases, principles)
- multiple inheritance
- phonology, syntax, and semantics are represented in one description:
 - Phonology
 - Syntax
 - Semantics

- lexicalized (head-driven)
- sign-based (Saussure, 1916)
- typed feature structures (lexical entries, phrases, principles)
- multiple inheritance
- phonology, syntax, and semantics are represented in one description:
 - Phonology
 - Syntax
 - Semantics

- lexicalized (head-driven)
- sign-based (Saussure, 1916)
- typed feature structures (lexical entries, phrases, principles)
- multiple inheritance
- phonology, syntax, and semantics are represented in one description:
 - Phonology
 - Syntax
 - Semantics

- lexicalized (head-driven)
- sign-based (Saussure, 1916)
- typed feature structures (lexical entries, phrases, principles)
- multiple inheritance
- phonology, syntax, and semantics are represented in one description:
 - Phonology
 - Syntax
 - Semantics

Valency and Grammar Rules: PSG

huge number of rules:

```
S \rightarrow NP, V
```

$$S \rightarrow NP, NP, V$$

$$S \rightarrow NP, PP["uber"], V$$

$$S \rightarrow NP, NP, NP, V$$

$$S \rightarrow NP, NP, PP[mit], V$$

```
X schläft ('sleeps')
```

Valency and Grammar Rules: PSG

huge number of rules:

```
S \rightarrow NP, V X \ schl\ddot{a}ft \ ('sleeps')

S \rightarrow NP, NP, V X \ Y \ liebt \ ('loves')

S \rightarrow NP, PP[\ddot{u}ber], V X \ \ddot{u}ber \ y \ spricht \ ('talks \ about')

S \rightarrow NP, NP, NP, V X \ Y \ Z \ gibt \ ('gives')

S \rightarrow NP, NP, PP[mit], V X \ Y \ mit \ Z \ dient \ ('serves')
```

verbs have to be used with the right rule

Valency and Grammar Rules: HPSG

 arguments represented as complex categories in the lexical entry of the head (similar to categorial grammar)

Valency and Grammar Rules: HPSG

 arguments represented as complex categories in the lexical entry of the head (similar to categorial grammar)

```
Verb SUBCAT
schlafen (NP)
lieben (NP, NP)
sprechen (NP, PP[über])
geben (NP, NP, NP)
dienen (NP, NP, PP[mit])
```

Example Tree with Valency Information (I)

 $V[SUBCAT \langle \rangle]$ corresponds to a fully saturated phrase (VP or S)

Example Tree with Valency Information (II)

Valency and Grammar Rules: HPSG

specific rules for head argument combination:

```
V[\mathsf{SUBCAT} \ A] \quad \rightarrow \quad \mathbf{1} \quad V[\mathsf{SUBCAT} \ A \oplus \ \langle \ \mathbf{1} \ \rangle \ ]
```

Valency and Grammar Rules: HPSG

• \oplus is a relation that concatenates two lists:

$$\langle a, b \rangle = \langle a \rangle \oplus \langle b \rangle$$
 or $\langle b \rangle \oplus \langle a, b \rangle \oplus \langle a, b \rangle$

Valency and Grammar Rules: HPSG

• \oplus is a relation that concatenates two lists:

$$\langle a, b \rangle = \langle a \rangle \oplus \langle b \rangle$$
 or $\langle \rangle \oplus \langle a, b \rangle$ or $\langle a, b \rangle \oplus \langle a \rangle$

In the rule above a list is split in a list that contains exactly one element
 (1) and a rest (A).

Valency and Grammar Rules: HPSG

- \oplus is a relation that concatenates two lists:

$$\langle a, b \rangle = \langle a \rangle \oplus \langle b \rangle$$
 or $\langle \rangle \oplus \langle a, b \rangle$ or $\langle a, b \rangle \oplus \langle a \rangle$

- In the rule above a list is split in a list that contains exactly one element
 (1) and a rest
 (A).
- Depending on the valency of the head the rest may contain zero or more elements.

Generalization over Rules

specific rules for head argument combinations:

Generalization over Rules

specific rules for head argument combinations:

• abstraction with respect to the order:

Generalization over Rules

specific rules for head argument combinations:

• abstraction with respect to the order:

generalized, abstract schema (H = head):

```
H[SUBCAT \boxed{A}] \rightarrow H[SUBCAT \boxed{A} \oplus \langle \boxed{1} \rangle ]
```

• generalized, abstract shema (H = head): $H[SUBCAT \boxed{A}] \rightarrow H[SUBCAT \boxed{A} \oplus \langle \boxed{1} \rangle]$

- generalized, abstract shema (H = head): $H[SUBCAT \boxed{A}] \rightarrow H[SUBCAT \boxed{A} \oplus \langle \boxed{1} \rangle]$ $\boxed{1}$
- possible instantiations of the schema:

- generalized, abstract shema (H = head): H[SUBCAT \boxed{A}] \rightarrow H[SUBCAT $\boxed{A} \oplus \langle \boxed{1} \rangle$] $\boxed{1}$
- possible instantiations of the schema:

```
• generalized, abstract shema (H = head): 
H[SUBCAT \boxed{A}] \rightarrow H[SUBCAT \boxed{A} \oplus \langle \boxed{1} \rangle] \boxed{1}
```

possible instantiations of the schema:

```
V[SUBCAT 	extbf{A}] 	o V[SUBCAT 	extbf{A} \langle NP \rangle \oplus \langle 	extbf{I} NP \rangle] 	extbf{I} NP  erwartet (wait for) Maria
```

N[SUBCAT
$$\triangle$$
] \rightarrow N[SUBCAT \triangle $\langle \rangle \oplus \langle \square DET \rangle$]

Mann (man)

1 Det der (the)

Representation of Valency in Feature Descriptions

```
gibt ('gives', finite form):

\begin{bmatrix}
PHON & \langle gibt \rangle \\
PART-OF-SPEECH & verb \\
SUBCAT & \langle NP[nom], NP[acc], NP[dat] \rangle
\end{bmatrix}
```

NP[nom], NP[acc] and NP[dat] are abbreviations of complex feature descriptions.

Demo: Grammar 3

- (1) a. der Mann schläft the man sleeps 'The man sleeps'
 - b. der Mann die Frau kennt the man the woman knows 'The man knows the woman.'

Outline

- Motivation & Psychological Reality
- General Overview of the Framework
- Valency
- Head Argument Structures
- Semantics
- Hierarchical Organization of Knowledge

- Feature Descriptions as uniform means for describing linguistic objects
 - morphological rules
 - lexical entries
 - syntactic rules

- Feature Descriptions as uniform means for describing linguistic objects
 - morphological rules
 - lexical entries
 - syntactic rules
- separation of immediate dominance (ID) and linearer precedence (LP)

- Feature Descriptions as uniform means for describing linguistic objects
 - morphological rules
 - lexical entries
 - syntactic rules
- separation of immediate dominance (ID) and linearer precedence (LP)
- dominance in DTR features (head daughters and non-head daughters)

- Feature Descriptions as uniform means for describing linguistic objects
 - morphological rules
 - lexical entries
 - syntactic rules
- separation of immediate dominance (ID) and linearer precedence (LP)
- dominance in DTR features (head daughters and non-head daughters)
- precedence is implicit in PHON

Part of the Structure in AVM Representation – PHON values (I)

$$\begin{array}{c|c} & & & \\ & & \\ \text{Det} & & \\ & \\ & & \\ & \\ & & \\ &$$

There is exactly one head daughter (HEAD-DTR).
 The head daughter contains the head.
 a structure with the daughters the and picture of Mary → picture of Mary is the head daughter, since picture is the head.

Part of the Structure in AVM Representation – PHON values (I)

$$\begin{array}{c|c} & & & \\ & & \\ \text{Det} & & \\ & \\ & & \\ & \\ & & \\ &$$

- There is exactly one head daughter (HEAD-DTR).
 The head daughter contains the head.
 a structure with the daughters the and picture of Mary → picture of Mary is the head daughter, since picture is the head.
- There may be several non-head daughters
 (if we assume flat structures or in headless binary branching structures).

Modelling Constituent Structure with Feature Structures

Representation of Grammar Rules

• Dominance Rule:

The arrow stands for implication

• alternative spelling, inspired by the \overline{X} Schema: H[SUBCAT $\boxed{A} \rightarrow H[SUBCAT \boxed{A} \oplus \langle \boxed{1} \rangle]$ $\boxed{1}$ The arrow stands for replacement (rewriting)

• Dominance Rule:

The arrow stands for implication

- alternative spelling, inspired by the \overline{X} Schema: H[SUBCAT $\boxed{A} \rightarrow H[SUBCAT \boxed{A} \oplus \langle \boxed{1} \rangle]$ $\boxed{1}$ The arrow stands for replacement (rewriting)
- possible instantiations:

```
N[SUBCAT \triangle] \rightarrowN[SUBCAT \triangle] \Diamond \oplus \Diamond Det \Diamond] Det V[SUBCAT \triangle] \rightarrowV[SUBCAT \triangle] \Diamond \oplus \Diamond NP \Diamond] NP V[SUBCAT \triangle] \rightarrowV[SUBCAT \triangle] \Diamond NP \Diamond \bigcirc NP
```

Head Argument Structures

Modelling Constituent Structure with Feature Structures

An Example

Part of the Structure in AVM Representation – PHON values (I)


```
\begin{bmatrix} \text{PHON} & \langle \textit{ dem Mann gibt } \rangle \\ \text{HEAD-DTR} & \left[ \text{PHON } \langle \textit{ gibt } \rangle \right] \\ \\ \text{NON-HEAD-DTRS} & \left\{ \begin{bmatrix} \text{PHON} & \langle \textit{ dem Mann } \rangle \\ \text{HEAD-DTR} & \left[ \text{PHON } \langle \textit{ Mann } \rangle \right] \\ \\ \text{NON-HEAD-DTRS} & \left\langle \left[ \text{PHON } \langle \textit{ dem } \rangle \right] \right\rangle \end{bmatrix} \right\}
```

Head Argument Structures

Partial Structure in Feature Structure Representation

```
 \begin{bmatrix} \text{PHON } \langle \textit{ dem Mann gibt } \rangle \\ \text{SUBCAT } \boxed{A} \langle \text{NP}[\textit{nom}], \text{NP}[\textit{acc}] \rangle \\ \text{HEAD-DTR } \begin{bmatrix} \text{PHON } \langle \textit{ gibt } \rangle \\ \text{SUBCAT } \boxed{A} \oplus \langle \boxed{1} \rangle \end{bmatrix} 
| NON-HEAD-DTRS | PHON \( \langle \text{dem Mann } \rangle \) | P-O-S noun | SUBCAT \( \rangle \rangle \rangle \text{HEAD-DTR ...} \rangle \rangle \rangle \text{head-argument-phrase} \] | head-argument-phrase
```

Projection of Head Properties

The finite verb is the head.

Head Argument Structures

└─Projection of Head Properties

Feature Structure Representation: the HEAD Value

possible feature geometry:

```
PHON list of phoneme strings
P-O-S p-o-s
VFORM vform
SUBCAT list
```

Feature Structure Representation: the HEAD Value

possible feature geometry:

```
PHON list of phoneme strings
P-O-S p-o-s
VFORM vform
SUBCAT list
```

more structure, bundling of information that has to be projected:

```
PHON list of phoneme strings

HEAD P-O-S P-O-S VFORM vform

SUBCAT list
```

Head Argument Structures

└─Projection of Head Properties

Different Heads Project Different Features

• The feature VFORM makes sense for verbs only.

Head Argument Structures

└─Projection of Head Properties

Different Heads Project Different Features

- The feature VFORM makes sense for verbs only.
- German prenominal adjectives and nouns project case.

Different Heads Project Different Features

- The feature VFORM makes sense for verbs only.
- German prenominal adjectives and nouns project case.
- Possible structure: a structure that contains all features:

CASE has no value for verbs, VFORM has no value for nouns

Different Heads Project Different Features

- The feature VFORM makes sense for verbs only.
- German prenominal adjectives and nouns project case.
- Possible structure: a structure that contains all features:

CASE has no value for verbs, VFORM has no value for nouns

- Better solution: different types of feature structures
 - for verbs:

• for nouns:

```
CASE case
```

△ A Lexical Entry with Head Features

A Lexical Entry with Head Features

• A lexical entry contains the following:

```
gibt: ('gives')
```

☐A Lexical Entry with Head Features

A Lexical Entry with Head Features

• A lexical entry contains the following:

```
gibt: ('gives')

[PHON 〈 gibt 〉
```

phonological information

A Lexical Entry with Head Features

• A lexical entry contains the following:

- phonological information
- head information (part of speech, verb form, ...)

A Lexical Entry with Head Features

A lexical entry contains the following:

```
gibt: ('gives')
\begin{bmatrix} PHON & \langle gibt \rangle \\ HEAD & \begin{bmatrix} VFORM & fin \\ verb \end{bmatrix} \end{bmatrix}
SUBCAT \langle NP[nom], NP[acc], NP[dat] \rangle
```

- phonological information
- head information (part of speech, verb form, ...)
- valency information: a list of descriptions of arguments

The Head Feature Principle

The Head Feature Principle

 In a headed structure the head features of the mother are identical to the head features of the head daughter.

$$headed-phrase \Rightarrow \begin{bmatrix} \text{HEAD} \ 1 \\ \text{HEAD-DTR} | \text{HEAD} \ 1 \end{bmatrix}$$

The Head Feature Principle

The Head Feature Principle

• In a headed structure the head features of the mother are identical to the head features of the head daughter.

$$headed-phrase \Rightarrow \begin{bmatrix} \text{HEAD } \boxed{1} \\ \text{HEAD-DTR} \middle| \text{HEAD } \boxed{1} \end{bmatrix}$$

- head-argument-phrase is a subtype of headed-phrase
 - ightarrow All constraints apply to structures of this type as well.

The Head Feature Principle

• In a headed structure the head features of the mother are identical to the head features of the head daughter.

$$headed-phrase \Rightarrow \begin{bmatrix} \text{HEAD } \boxed{1} \\ \text{HEAD-DTR} \middle| \text{HEAD } \boxed{1} \end{bmatrix}$$

- head-argument-phrase is a subtype of headed-phrase
 - \rightarrow All constraints apply to structures of this type as well.
- head-argument-phrase inherits properties of/constraints on headed-phrase.

LDemo: Grammar 4

Demo: Grammar 4

- (2) a. der Mann schläft the man sleeps 'The man sleeps'
 - b. der Mann die Frau kennt the man the woman knows 'The man knows the woman.'

Outline

- Motivation & Psychological Reality
- General Overview of the Framework
- Valency
- Head Argument Structures
- Semantics
- Hierarchical Organization of Knowledge

Semantics

 Pollard and Sag (1987) and Ginzburg and Sag (2001) assume Situation Semantics (Barwise and Perry, 1983; Cooper, Mukai and Perry, 1990; Devlin, 1992).

Semantics

- Pollard and Sag (1987) and Ginzburg and Sag (2001) assume Situation Semantics (Barwise and Perry, 1983; Cooper, Mukai and Perry, 1990; Devlin, 1992).
- More recent work (in particular work in relation to computational implementations) uses *Minimal Recursion Semantics* (Copestake, Flickinger, Pollard and Sag, 2005).

Minimal Recursion Semantics

- MRS allows for underspecified representation of quantifier scope.
 Lets consider the example in (3):
 - (3) Every dog chased some cat.

Minimal Recursion Semantics

- MRS allows for underspecified representation of quantifier scope.
 Lets consider the example in (3):
 - (3) Every dog chased some cat.
- MRS representation: top h0
 h1: every(x, h3, h2),
 h3: dog(x),
 h4: chase(e, x, y),
 h5: some(y, h7, h6),
 h7: cat(y)

Parts of an MRS Representation

Every elementary predication (EP) has a label of type handle.
 These are abbreviate as hs.

Parts of an MRS Representation

- Every elementary predication (EP) has a label of type handle.
 These are abbreviate as hs.
- Quantifiers take arguments of type handle.
 These arguments have to be identified with a label.

More Complicated Cases

- The cat dog example is too simple, since quantifiers are identified with the label of the noun.
 This is not appropriate for (4a), since has the readings (4b-c).
 - (4) a. Every nephew of some famous politician runs.
 - b. $every(x, some(y, famous(y) \land politician(y), nephew(x, y)), run(x))$
 - c. some(y, famous(y) \land politician(y), every(x, nephew(x, y), run(x)))

More Complicated Cases

- The cat dog example is too simple, since quantifiers are identified with the label of the noun.
 This is not appropriate for (4a), since has the readings (4b-c).
 - (4) a. Every nephew of some famous politician runs.
 - b. every(x, some(y, famous(y) \land politician(y), nephew(x, y)), run(x))
 - c. some(y, famous(y) \land politician(y), every(x, nephew(x, y), run(x)))
- It is not correct to leave the plugging absolutely underspecified, since this would licence (5b–c).
 - (5) a. h1, $\{h2:every(x, h3, h4), h5:nephew(x, y), h6:some(y, h7, h8), h7:politician(y), h7:famous(y), h10:run(x)\}$
 - b. every(x, run(x), some(y, famous(y) \land politician(y), nephew(x, y)))
 - c. some(y, famous(y) \land politician(y), every(x, run(x), nephew(x, y)))

L_{Semantics}

Handle-Constraints

Handle Constraints

In addition so-called handle constraints are used (qeq oder =q).
 A qeq constraint relates an argument handle and a label:
 h =q I means that the handle is filled by the label directly,
 or one or more quantifiers are inserted between h and l.

Handle Constraints

- In addition so-called handle constraints are used (qeq oder =q).
 A qeq constraint relates an argument handle and a label:
 h =q I means that the handle is filled by the label directly, or one or more quantifiers are inserted between h and l.
- This is pretty complicated.
 We recommend Blackburn and Bos, 2005 as a general introduction to underspecified semantic representations.
 - After this the dense MRS paper can be understood.

Handle Constraints

- In addition so-called handle constraints are used (qeq oder =q).
 A qeq constraint relates an argument handle and a label:
 h =q I means that the handle is filled by the label directly, or one or more quantifiers are inserted between h and l.
- This is pretty complicated.
 We recommend Blackburn and Bos, 2005 as a general introduction to underspecified semantic representations.
 After this the dense MRS paper can be understood.
- We now look at the representation of MRS with feature description.
 A demo will follow and make things clearer.

The Representation of Relations with Feature Descriptions

The Representation of Relations with Feature Descriptions

```
love(e,x,y)
```

```
ARG0 event
ARG1 index
ARG2 index
love
```

The Representation of Relations with Feature Descriptions

$$\begin{bmatrix} \text{ARG0 event} \\ \text{ARG1 index} \\ \text{ARG2 index} \\ \textit{love} \end{bmatrix} \qquad \begin{bmatrix} \text{ARG0 index} \\ \textit{book} \end{bmatrix}$$

Representation of the CONT Value

• possible data structure (CONT = CONTENT):

```
PHON list of phoneme strings
HEAD head
SUBCAT list
CONT mrs
```

Representation of the CONT Value

possible data structure (CONT = CONTENT):

```
PHON list of phoneme strings
HEAD head
SUBCAT list
CONT mrs
```

more structure:

partition into syntactic and semantic information (CAT = CATEGORY)

```
PHON list of phoneme strings

HEAD head
SUBCAT list
cat

CONT mrs
```

ullet ightarrow it is now possible to share syntactic information only

Sharing of Syntactic Information in Coordinations

symmetric coordination: the CAT value is identical

```
PHON list of phoneme strings

HEAD head
SUBCAT list
cat

CONT mrs
```

- Examples:
 - (6) a. [the man and the woman]
 - b. He [knows and likes] this record.
 - c. He is [stupid and arrogant].

The Semantic Contribution of Nominal Objects

• semantic index + restrictions

```
\begin{bmatrix} \text{PHON } \langle \textit{Buch } \rangle \\ \text{CAT} & \begin{bmatrix} \text{HEAD} & \textit{noun} \\ \text{SUBCAT } \langle \text{DET} \rangle \end{bmatrix} \end{bmatrix}
\begin{bmatrix} \text{IND } \boxed{1} \begin{bmatrix} \text{PER } 3 \\ \text{NUM } \textit{sg} \\ \text{GEN } \textit{neu} \\ \textit{index} \end{bmatrix}
\begin{bmatrix} \text{RELS } \left\langle \begin{bmatrix} \text{ARGO } \boxed{1} \\ \textit{buch} \end{bmatrix} \right\rangle
```

The Semantic Contribution of Nominal Objects

semantic index + restrictions

- Person, number, and gender are relevant for reference/coreference:
 - (7) Die Frau; kauft ein Buch;. Sie; liest es; the woman buys a book she reads it

Abbreviations

$$\mathsf{NP}_{[3,sg,fem]} \begin{bmatrix} \mathsf{CAT} & \mathsf{HEAD} & \mathsf{noun} \\ \mathsf{SUBCAT} & \langle \rangle \end{bmatrix}$$

$$\mathsf{CONT}[\mathsf{IND} & \mathsf{PER} & 3 \\ \mathsf{NUM} & \mathsf{sg} \\ \mathsf{GEN} & \mathsf{fem} \end{bmatrix}$$

Abbreviations

$$\text{NP}_{[3,sg,fem]} \begin{bmatrix} \text{CAT} & \text{HEAD } \textit{noun} \\ \text{SUBCAT } \langle \rangle \end{bmatrix} \\ \text{CONT} & \text{IND} & \text{PER } 3 \\ \text{NUM } \textit{sg} \\ \text{GEN } \textit{fem} \end{bmatrix} \end{bmatrix} \quad \text{NP}_{\boxed{1}} \begin{bmatrix} \text{CAT} & \text{HEAD } \textit{noun} \\ \text{SUBCAT } \langle \rangle \end{bmatrix}$$

The Semantic Contribution of Verbs and Linking

• Linking of valency information and semantic contribution *gibt* (*gives*, finite Form):

The Semantic Contribution of Verbs and Linking

• Linking of valency information and semantic contribution *gibt* (*gives*, finite Form):

• The referential indices of the NPs are identified with the semantic roles.

The Projection of the Semantic Contribution of the Head

☐ The Semantic Contribution of Phrases

Semantics Principle (Part)

In headed strucutres the semantic index of the mother is identical to the semantic index of the head daughter.

Semantics Principle (Part)

In headed strucutres the semantic index of the mother is identical to the semantic index of the head daughter.

The RELS list of the mother is the concatenation of the RELS lists of the daughters.

The $\ensuremath{\mathrm{H\text{-}CONS}}$ list of the mother is the concatenation of the $\ensuremath{\mathrm{H\text{-}CONS}}$ lists of the daughters.

Semantics

The Semantic Contribution of Phrases

Demo: Berligram

(8) Jeder Sohn eines Beamten rennt. every son of.a state.employee runs

Outline

- Motivation & Psychological Reality
- General Overview of the Framework
- Valency
- Head Argument Structures
- Semantics
- Hierarchical Organization of Knowledge

A Non-Linguistic Example for Multiple Inheritance

Types: A Non-Linguistic Example for Multiple Inheritance

• Subtypes inherits properties and constraints of their supertypes.

- Subtypes inherits properties and constraints of their supertypes.
- Generalizations can be captured: General restrictions are represented at types that are high in the hierarchy.

- Subtypes inherits properties and constraints of their supertypes.
- Generalizations can be captured:
 General restrictions are represented at types that are high in the hierarchy.
- More special types inherit from their super types.

- Subtypes inherits properties and constraints of their supertypes.
- Generalizations can be captured:
 General restrictions are represented at types that are high in the hierarchy.
- More special types inherit from their super types.
- We can represent information with no redundancy.

• Types are organized in a hierarchy.

- Types are organized in a hierarchy.
- The most general type is on top.

- Types are organized in a hierarchy.
- The most general type is on top.
- Information about properties of objects of a certain type are specified as constraints on this type.

- Types are organized in a hierarchy.
- The most general type is on top.
- Information about properties of objects of a certain type are specified as constraints on this type.
- Subtypes inherit these properties.

- Types are organized in a hierarchy.
- The most general type is on top.
- Information about properties of objects of a certain type are specified as constraints on this type.
- Subtypes inherit these properties.
- Example: Entries in an Encyclopedia.
 Entry refers to more general concepts,
 no repitition of information that is present at more general concepts.

- Types are organized in a hierarchy.
- The most general type is on top.
- Information about properties of objects of a certain type are specified as constraints on this type.
- Subtypes inherit these properties.
- Example: Entries in an Encyclopedia.
 Entry refers to more general concepts,
 no repitition of information that is present at more general concepts.
- The upper part of the hierarchy is relevant for all languages ("universal grammar").

- Types are organized in a hierarchy.
- The most general type is on top.
- Information about properties of objects of a certain type are specified as constraints on this type.
- Subtypes inherit these properties.
- Example: Entries in an Encyclopedia.
 Entry refers to more general concepts,
 no repitition of information that is present at more general concepts.
- The upper part of the hierarchy is relevant for all languages ("universal grammar").
- More specific type can be relevant for certain classes of languages or even single languages only.

Type Hierarchy for sign

all subtypes of headed-phrase inherit restrictions

All Constraints for a Local Tree (Head-Argument)

```
HEADISUBCATAHEAD-DTR\begin{bmatrix} \text{HEAD} & I \\ \text{SUBCAT} & A \oplus \langle 2 \rangle \end{bmatrix}NON-HEAD-DTRS \langle 2 \ranglehead-argument-phrase
```

Partial Structure in Feature Structure Representation

```
PHON 〈 dem Mann gibt 〉
HEAD 1
SUBCAT A (NP[nom], NP[acc])
            PHON ( gibt )
                      VFORM fin
HEAD-DTR
            SUBCAT A \oplus \langle 2 \rangle
            word
                      PHON ( dem Mann )
                              CAS dat
                      HEAD
                      SUBCAT ()
                       HEAD-DTR . . .
                       NON-HEAD-DTRS . . .
                      head-argument-phrase
head-argument-phrase
```

• Features and values caracterize linguistic objects.

- Features and values caracterize linguistic objects.
- Structure sharing allows to say that certain values in a feature structure are identical.

- Features and values caracterize linguistic objects.
- Structure sharing allows to say that certain values in a feature structure are identical.
- Valence information is represented in lists in a complex description of the head.

- Features and values caracterize linguistic objects.
- Structure sharing allows to say that certain values in a feature structure are identical.
- Valence information is represented in lists in a complex description of the head.
- Types allow for classification of (linguistic) objects.

- Features and values caracterize linguistic objects.
- Structure sharing allows to say that certain values in a feature structure are identical.
- Valence information is represented in lists in a complex description of the head.
- Types allow for classification of (linguistic) objects.

- Features and values caracterize linguistic objects.
- Structure sharing allows to say that certain values in a feature structure are identical.
- Valence information is represented in lists in a complex description of the head.
- Types allow for classification of (linguistic) objects.

- Features and values caracterize linguistic objects.
- Structure sharing allows to say that certain values in a feature structure are identical.
- Valence information is represented in lists in a complex description of the head.
- Types allow for classification of (linguistic) objects.

References

- Barwise, Jon and Perry, John. 1983. Situations and Attitudes. Cambridge: Massachusetts, London: England: The MIT Press.
- Barwise, Jon and Perry, John. 1987. Situationen und Einstellungen – Grundlagen der Situationssemantik. Berlin, New York: de Gruyter.
- Blackburn, Patrick and Bos, Johan. 2005. Representation and Inference for Natural Language. A First Course in Computational Semantics. Stanford: CSLI Publications.
- Borsley, Robert D. 1999. Syntactic Theory: A Unified Approach. London: Edward Arnold, second edition.
- Chomsky, Noam. 1968. Language and Mind. New York: Harcourt, Brace and World.
- Cooper, Robin, Mukai, Kuniaki and Perry, John (eds.). 1990. Situation Theory And Its Applications, Volume 1. CSLI Lecture Notes, No. 22, Stanford: CSLI Publications.
- Copestake, Ann, Flickinger, Daniel P., Pollard, Carl J. and Sag, Ivan A. 2005. Minimal Recursion Semantics: an Introduction. Research on Language and Computation 4(3), 281–332. http://lingo.stanford.edu/sag/papers/copestake.pdf, 11.10.2006.
- Devlin, Keith. 1992. Logic and Information. Cambridge: Cambridge University Press.

- Fodor, Jerry, Bever, T.G. and Garrett, M.F. 1974. *The Psychology of Language*. New York: McGraw-Hill.
- Ginzburg, Jonathan and Sag, Ivan A. 2001. Interrogative Investigations: the Form, Meaning, and Use of English Interrogatives. CSLI Lecture Notes, No. 123, Stanford: CSLI Publications.
- Müller, Stefan. 2007. Head-Driven Phrase Structure Grammar: Eine Einführung. Stauffenburg Einführungen, No. 17, Tübingen: Stauffenburg Verlag. http://www.cl. uni-bremen.de/∼stefan/Pub/hpsg-lehrbuch.html, 02.07.2007.
- Pollard, Carl J. and Sag, Ivan A. 1987. Information-Based Syntax and Semantics. CSLI Lecture Notes, No. 13, Stanford: CSLI Publications.
- Pollard, Carl J. and Sag, Ivan A. 1994. Head-Driven Phrase Structure Grammar. Studies in Contemporary Linguistics, Chicago, London: University of Chicago Press.
- Sag, Ivan A., Wasow, Thomas and Bender, Emily M. 2003. Syntactic Theory: A Formal Introduction. CSLI Lecture Notes, No. 152, Stanford: CSLI Publications, second edition. http://cslipublications.stanford.edu/site/ 1575864002.html, 05.06.2003.
- Saussure, Ferdinand de. 1916. Grundfragen der allgemeinen Sprachwissenschaft. Berlin: Walter de Gruyter & Co.