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Previous Lecture
– NLP Anthology http://aclweb.org/anthology-new/,
– CNG classification method,
– Elements of probability theory,
– Generative models,
– Bayesian inference

8.2 Probabilistic Model
Random variables
We assume that we have a set of n random variables that capture an outcome in our model:

V = (V1, V2, ..., Vn)

They may be observable variables, or hidden variables. Each variable can be assigned a value from a finite set of
different values. We denote these values as {x1, x2, . . . , xm}.

Random configuration
A tuple of values, i.e., a vector x = (x1, x2, . . . , xn), where each value is assigned to a variable: V1 = x1,
V2 = x2, . . . is called a random configuration.

V1 = x1, V2 = x2, . . . , Vn = xn

In modelling our problem we assume that a sequence of configurations x(1), ...,x(t) is drawn from some random
source:

x(1) = (x11, x12, . . . x1n)
x(2) = (x21, x22, . . . x2n)

...
x(t) = (xt1, xt2, . . . xtn)

Again, we assume a fixed number n of components in each configuration, and assume values xij are from a finite
set {x1, x2, . . . , xm}.
Probabilistic modelling in NLP can be described as a general framework for modelling NLP problems using
random variables, random configurations, and finding effective ways of reasoning about probabilities of these
configurations.

8.3 Computational Tasks in Probabilistic Modelling
1. Evaluation: compute probability of a complete configuration

2. Simulation: generate random configurations

Simulation is also referred to as generation, or sampling.
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3. Inference: has the following sub-tasks:

3.a Marginalization: computing probability of a partial configuration,

3.b Conditioning: computing conditional probability of a completion given an observation,

3.c Completion: finding the most probable completion, given an observation

4. Learning: learning parameters of a model from data.

Let us use an example to illustrate this:

Example: Spam Detection
The problem of spam detection in e-mail is the problem of automatically detecting whether an arbitrary e-mail
message is spam or not. In a toy model, we assume that we can detect whether a message is spam or not relying
only on the fact whether the ‘Subject:’ header of the message is capitalized (i.e., completely written in uppercase
letters) and whether the ‘Subject:’ header contains the word ‘free’ (uppercase or lowercase). For example, “NEW
MORTGAGE RATE” is likely the subject of a spam message, as well as “Money for Free,” “FREE lunch,” etc.
Hence, our model is based on the following three random variables and each of them gets one of two values Y (for
Yes) or N (for No):

Caps = ‘Y’ if the message subject line does not contain lowercase letter, ‘N’ otherwise,
Free = ‘Y’ if the word ‘free’ appears in the message subject line (letter case is ignored), ‘N’ other-

wise, and
Spam = ‘Y’ if the message is spam, and ‘N’ otherwise.

In order to learn what happens in real-world, we open our mailbox, which serves as our random source, randomly
select 100 messages and count how many times each configuration appears.
We might obtain the following table:

Free Caps Spam Number of messages
Y Y Y 20
Y Y N 1
Y N Y 5
Y N N 0
N Y Y 20
N Y N 3
N N Y 2
N N N 49

Total: 100

Let us consider our first, straightforward model, called Joint Distribution Model.

8.4 Joint Distribution Model
In the Joint Distribution Model, we specify the complete joint probability distribution, i.e., the probability of
each complete configuration x = (x1, ..., xn):

P(V1 =x1, ..., Vn =xn)

In general, we need mn parameters (minus one constraint) to specify an arbitrary joint distribution on n random
variables with m values. One could represent this by a lookup table px(1) , px(2) , . . . , px(mn) , where px(`) gives
the probability that the random variables jointly take on configuration x(`); that is, px(`) = P(V = x(`)). These
numbers are positive and satisfy the constraint that

∑mn

`=1 px(`) = 1.
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Example: Spam Detection (continued)
To estimate the joint distribution in our spam detection example, we can simply divide the number of message for
each configuration with the total number of messages:

Free Caps Spam Number of messages P
Y Y Y 20 0.20
Y Y N 1 0.01
Y N Y 5 0.05
Y N N 0 0.00
N Y Y 20 0.20
N Y N 3 0.03
N N Y 2 0.02
N N N 49 0.49

Total: 100 1.00

Estimating probabilities in this way is known as Maximum Likelihood Estimation (MLE), since it can be shown
that in this way the probability P(T |M), where T is our training data and M is the model, is maximized in terms
of M .

8.4.1 Evaluation
Evaluate the probability of a complete configuration x = (x1, ..., xn).
Use a table lookup:

P(V1 =x1, ..., Vn =xn) = p(x1,x2,...,xn)

For example:
P(Free = Y, Caps = N, Spam = N) = 0.00

This example illustrates a drawback of the full joint distribution model: the sparse data problem.
We concluded that the probability of this configuration is 0, i.e., that it is impossible, based on the fact that we have
not seen it before. (!?)
However, not seeing a configuration does not necessarily mean that it cannot appear in the future.

8.4.2 Simulation
Draw a complete configuration x according to the joint distribution. Given the lookup table representation, one
could just compute the cumulative value of the px(`)’s, draw a random number p between 0 and 1, and select the
configuration x(`) whose cumulative probability interval contains p.

8.4.3 Inference
3.a Marginalization.

Compute the probability of an incomplete configuration P(X1 =x1, ..., Xk =xk), where k < n:

P(V1 =x1, ..., Vk =xk)

=
∑
yk+1

· · ·
∑
yn

P(V1 =x1, ..., Vk =xk, Vk+1 =yk+1, ..., Vn =yn)

=
∑
yk+1

· · ·
∑
yn

p(x1,...,xk,yk+1,...,yn)

We need to be able to evaluate complete configurations and then sum over mn−k possible completions,
where m is the number of elements in the domain of yk+1, . . . , yn.
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3.b Conditioning.
Compute the conditional probability of a possible completion (yk+1, ..., yn) given an incomplete configura-
tion (x1, ..., xk).

P(Vk+1 =yk+1, ..., Vn =yn|V1 =x1, ..., Vk =xk)

=
P(V1 =x1, ..., Vk =xk, Vk+1 =yk+1, ..., Vn =yn)

P(V1 =x1, ..., Vk =xk)

=
p(x1,...,xk,yk+1,...,yn)∑

zk+1
· · ·

∑
zn

p(x1,...,xk,zk+1,...,zn)

Need to evaluate a complete configuration and then divide by a marginal sum.
3.c Completion.

Find the most probable completion (y∗k+1, ..., y
∗
n) given an incomplete configuration (x1, ..., xk).

y∗k+1, ..., y
∗
n = arg max

yk+1,...,yn

P(Vk+1 =yk+1, ..., Vn =yn|V1 =x1, ..., Vk =xk)

= arg max
yk+1,...,yn

P(V1 =x1, ..., Vk =xk, Vk+1 =yk+1, ..., Vn =yn)
P(V1 =x1, ..., Vk =xk)

= arg max
yk+1,...,yn

P(V1 =x1, . . . , Vk =xk, Vk+1 =yk+1, ..., Vn =yn)

= arg max
yk+1,...,yn

p(x1,...,xk,yk+1,...,yn)

Have to search through all mn−k possible completions and evaluate each complete configuration to find the
maximum.

8.4.4 Learning
Estimate probabilities by counting, i.e., using maximum likelihood estimation.
In the spam example, we simply calculated the table by dividing counts with the total number of samples.

Drawbacks of Joint Distribution Model
– memory cost to store table,
– running-time cost to do summations, and
– the sparse data problem in learning (i.e., training).

Other probability models are found by specifying specialized joint distributions, which satisfy certain indepen-
dence assumptions.
The goal is to impose structure on joint distribution P(V1 =x1, ..., Vn =xn). One key tool for imposing structure
is variable independence.
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