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Lecture 15: Naı̈ve Bayes Model
Room: FASS 2176
Time: 11:35 – 12:25

Previous Lecture
– Fully independent model

– example,
– computational tasks,

– Sum-product formula;
– Naive Bayes model: motivation

9 Naı̈ve Bayes model
In the Naı̈ve Bayes model we assume that all variables are independent except one distinguished variable, the
class variable. This variable is also called the output variable, and the other variables may be called the input
variables.
If we assume that the variable V1 is the output variable, and the variables V2, V3, . . . , Vn are the input variables,
then in the classification problem can be expressed as a conditional probability computation problem, or completion
problem of the probability:

P(V1 = x1|V2 = x2, V3 = x3, . . . , Vn = xn)
or

P(V1|V2, V3, . . . , Vn)
for short. After applying Bayes theorem we obtain:

P(V1|V2, V3, . . . , Vn) =
P(V2, V3, . . . , Vn|V1) · P(V1)

P(V2, V3, . . . , Vn)

If we assume that variables V2, V3, . . . , Vn are conditionally independent given V1, then the above equation be-
comes:

P(V1|V2, V3, . . . , Vn) =
P(V2, V3, . . . , Vn|V1) · P(V1)

P(V2, V3, . . . , Vn)

=
P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1) · P(V1)

P(V2, V3, . . . , Vn)

The conditional probabilities P(Vi|V1) for i ∈ {2 . . . n} can be efficiently computed and stored, and they eliminate
the sparse data problem.
Another way of deriving the Naı̈ve Bayes formula is the following:

P(V1 = x1, . . . , Vn = xn) = (3)
= P(V1 = x1)P(V2 = x2|V1 = x1)P(V3 = x3|V1 = x1, V2 = x2) . . . (4)

P(Vn = xn|V1 = x1, V2 = x2, . . . , Vn−1 = xn−1) (5)
NB
≈ P(V1 = x1)P(V2 = x2|V1 = x1)P(V3 = x3|V1 = x1) . . . (6)

P(Vn = xn|V1 = x1) (7)

Equality (3,4) holds always, and equality (5,6) is the Naı̈ve Bayes assumption.
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Example: A Naı̈ve Bayes Model for Spam Detection
In our spam detection example, the Naı̈ve Bayes assumption is:

P(Free, Caps, Spam) = P(Spam) · P(Free|Spam) · P(Caps|Spam)

Hence, in order to create a Naı̈ve Bayes model from our training data:

Free Caps Spam Number of messages
Y Y Y 20
Y Y N 1
Y N Y 5
Y N N 0
N Y Y 20
N Y N 3
N N Y 2
N N N 49

Total: 100

we calculate the following tables:

Spam P(Spam)
Y 20+5+20+2

100 = 0.47
N 1+0+3+49

100 = 0.53
,

Caps Spam P(Caps|Spam)
Y Y 20+20

20+5+20+2 ≈ 0.8511
Y N 1+3

1+0+3+49 ≈ 0.0755
N Y 5+2

20+5+20+2 ≈ 0.1489
N N 0+49

1+0+3+49 ≈ 0.9245

, and

Free Spam P(Free|Spam)
Y Y 20+5

20+5+20+2 ≈ 0.5319
Y N 1+0

1+0+3+49 ≈ 0.0189
N Y 20+2

20+5+20+2 ≈ 0.4681
N N 3+49

1+0+3+49 ≈ 0.9811

.

The probability of a configuration in this model is calculated in the following way:

P(Free = Y, Caps = N, Spam = N) = (8)
= P(Spam = N) · P(Caps = N |Spam = N) · P(Free = Y |Spam = N)
≈ 0.53 · 0.9245 · 0.0189 ≈ 0.0093

9.1 Computational Tasks in the Naı̈ve Bayes Model
We will cover the computational tasks in more details within the Bayesian Network in general.
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1. Evaluation
The probability of a complete configuration is calculated using the Naı̈ve Bayes assumption and table lookups. The
formula (8) illustrates probability evaluation of a complete configuration: P(Free = Y, Caps = N, Spam = N)
This example illustrates the fact that the Naı̈ve Bayes model is less amenable to the sparse date problem than the
joint distribution problem, in which the probability of this same configuration was estimated to be 0.

2. Simulation
Configurations are sampled by first sampling the output variable based on its table, and then the input variables
using the corresponding conditional tables.

3. Inference
Marginalization. If the partial configuration includes the output variable, it can be shown that the marginal
probability can be calculated using the following formula:

P(V1 = x1, . . . , Vk = xk) =
P(V1 = x1)P(V2 = x2|V1 = x1)P(V3 = x3|V1 = x1) . . .

P(Vk = xk|V1 = x1)

Conditioning. Example:

P(S = N |F = Y, C = N) =
P(S = N,F = Y, C = N)

P(F = Y, C = N)

Using Naı̈ve Bayes assumption:

P(S = N,F = Y, C = N) =
= P(S = N)P(F = Y |S = N)P(C = N |S = N)
= 0.53 · 0.9245 · 0.0189 ≈ 0.093

P(F = Y, C = N) = (by definition)
= P(S = Y, F = Y, C = N) + P(S = N,F = Y, C = N)
≈ P(S = Y )P(F = Y |S = Y )P(C = N |S = Y ) + 0.093
= 0.47 · 0.5319 · 0.1489 + 0.093
≈ 0.0465

Finally,

P(S = N |F = Y, C = N) =
0.0093
0.0465

≈ 0.2

Completion
Example: arg max

s∈{Y,N}
P(S = s|F = Y, C = N)

by definition
= arg max

s

P(S = s, F = Y, C = N)
P(F = Y, C = N)

P(F = Y, C = N) does not depend on s, hence

= arg max
s

P(S = s, F = Y, C = N)
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and by using Naı̈ve Bayes assumption)

= arg max
s

P(S = s)P(F = Y |S = s)P(C = N |S = s)︸ ︷︷ ︸
A(s)

For s = Y A(s = Y ) ≈ 0.0465, and for s = N A(s = N) ≈ 0.0093; hence

arg max
s

A(s) = Y

Learning
Maximum Likelihood Estimation: The parameters are estimated using a corpus.

9.2 Number of Parameters
A Naı̈ve Bayes model with n variables V1,. . . Vn is described with tables P(V1), P(V2|V1), P(V3|V1), . . . , P(Vn|V1).
These tables have constraints since each probability distribution must sum up to 1. If we assume that each variable
can take one of m distinct values, then the number of parameters and constraints in required tables are:

parameters constraints
table P(V1) m 1
table P(V2|V1) m2 m
table P(V3|V1) m2 m
...

...
...

table P(Vn|V1) m2 m
sum m + (n − 1)m2 1 + (n − 1)m

Hence, the number of free parameters is m+(n− 1)m2− 1− (n− 1)m = O(m2n), which is not very large since
the joint distribution model requires O(mn) parameters.

Pros and Cons of the Naı̈ve Bayes model
Pros:

– efficient
– no sparse data problem
– surprisingly good performance (accuracy), e.g., in text classification

Cons:
– can be over-simplifying
– cannot model more than one “output” variable
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