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CSCI 4152/6509 — Natural Language Processing 2-Nov-2009

Lecture 21: Probabilistic Context-Free-Grammars
Room: FASS 2176
Time: 11:35 – 12:25

Previous Lecture
– Message passing algorithm (cont’d):
– marginalization with one variable,
– marginalization in general,
– conditioning with one variable,
– arbitrary conditional probability,
– most probable completion;
– the burglar-earthquake example

12.5 HMM as Bayesian Network
HMM Example (revisited)

T1

W1

T2

W2

Tn

Wn

...

...

Training data:

swat V flies N like P ants N
time N flies V like P an D arrow N

Generated Tables
T1 P(T1)
N 0.5
V 0.5

, Ti−1 Ti P(Ti|Ti−1)
D N 1
N P 0.5
N V 0.5
P D 0.5
P N 0.5
V N 0.5
V P 0.5

, and Ti Wi P(Wi|Ti)
D an 2/3 ≈ 0.666666667
D * 1/3 ≈ 0.333333333
N ants 2/9 ≈ 0.222222222
N arrow 2/9 ≈ 0.222222222
N flies 2/9 ≈ 0.222222222
N time 2/9 ≈ 0.222222222
N * 1/9 ≈ 0.111111111
P like 0.8
P * 0.2
V flies 0.4
V swat 0.4
V * 0.2

.
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Tagging Example
Let us again use the example sentence: “flies are like flies”

T1

W1=flies

T2

W2=* (are) W3=like

T3

W4=flies

T4

The corresponding factor graph is:

V1 V2 V3 V4

W1=flies W3=like W4=fliesW2=*

f3 f3 f3

f2 f2 f2 f2

f1 m1

m2

m3

m4 m5

m6

m7

m8 m9

m10

m11

m12 m13

m14

m15

m16
m17

m18
m19

m20
m21

The messages are calculated as follows:
V1 m1

D 0
N 0.5
P 0
V 0.5

, and

W1 m2

flies 1
an 0
* 0
... 0

.

Calculation of m3 is done as follows:
m3

V1 = D W1 = flies: 1 · 0 = 0
W1 = an: 0 · 2

3 = 0

W1 =
...

... = 0
max:0

V1 = N W1 = flies : 1 · 2
9 = 2

9
W1 = an : 0 · 2

3 = 0
max:2/9

...

and we obtain

V1 m3

D 0
N 2/9
P 0
V 0.4

. The other messages are:

V1 m4(= m1 ·m3)
D 0 · 0 = 0
N 0.5 · 2/9 = 1/9
P 0 · 0 = 0
V 0.5 · 0.4 = 0.2

V2 m5

D 0
N 0.1
P 0.1
V 1/18

m5 is calculated as follows:

m5 m4 · f3

V2 = D V1 = D : 0 · 0 = 0
V1 = N : 1

9 · 0 = 0
V1 = P : 0 · 0.5 = 0
V1 = V : 0.2 · 0 = 0

max:0
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m5 m4 · f3

V2 = N V1 = D : 0 · 1 = 0
V1 = N : 1

9 · 0 = 0
V1 = P : 0 · 0.5 = 0
V1 = V : 0.2 · 0.5 = 0.1

max:0.1

m5 m4 · f3

V2 = P V1 = D : 0 · 0 = 0
V1 = N : 1

9 · 0.5 = 1/18
V1 = P : 0 · 0 = 0
V1 = V : 0.2 · 0.5 = 0.1

max:0.1

m5 m4 · f3

V2 = V V1 = D : 0 · 0 = 0
V1 = N : 1

9 · 0.5 = 1/18
V1 = P : 0 · 0 = 0
V1 = V : 0.2 · 0 = 0

max:1/18

We continue calculating:

W2 m6

flies 0
an 0
* 1
... 0

,

V2 m7

D 1/3
N 1/9
P 0.2
V 0.2

,

V2 m8(= m5 ·m7)
D 0 · 1

3 = 0
N 0.1 · 1

9 = 1/90
P 0.1 · 0.2 = 0.02
V 1

18 · 0.2 = 1/90

.

To calculate m9, we have the following intermediate calculations:
m9 m8 · f3

V3 = D V2 = D : 0 · 0 = 0
V2 = N : 1

90 · 0 = 0
V2 = P : 1

50 · 0.5 = 0.01
V2 = V : 1

90 · 0 = 0
max:0.01

m9 m8 · f3

V3 = N V2 = D : 0 · 0 = 0
V2 = N : 1

90 · 0 = 0
V2 = P : 1

50 · 0.5 = 0.01
V2 = V : 1

90 · 0.5 = 1/180
max:0.01

m9 m8 · f3

V3 = P V2 = D : 0 · 0 = 0
V2 = N : 1

90 · 0.5 = 1/180
V2 = P : 1

50 · 0 = 0
V2 = V : 1

90 · 0.5 = 1/180
max:1/180

m9 m8 · f3

V3 = V V2 = D : 0 · 0 = 0
V2 = N : 1

90 · 0.5 = 1/180
V2 = P : 1

50 · 0 = 0
V2 = V : 1

90 · 0 = 0
max:1/180

and we obtain:

V3 m9

D 0.01
N 0.01
P 1/180
V 1/180

. Then,

W3 m10

like 1
... 0

,

V3 m11

D 0
N 0
P 0.8
V 0

,

V3 m12(= m9 ·m11)
D 0.01 · 0 = 0
N 0.01 · 0 = 0
P 1

180 · 0.8 = 1/225
V 1

180 · 0 = 0

.

To calculate m13, we have the following intermediate calculations:
m13 m12 · f3

V3 = D V2 = D : 0 · 0 = 0
V2 = N : 0 · 0 = 0
V2 = P : 1

225 · 0.5 = 1/450
V2 = V : 0 · 0 = 0

max:1/450

m13 m12 · f3

V3 = N V2 = D : 0 · 1 = 0
V2 = N : 0 · 0 = 0
V2 = P : 1

225 · 0.5 = 1/450
V2 = V : 0 · 0.5 = 0

max:1/450

m13 m12 · f3

V3 = P V2 = D : 0 · 0 = 0
V2 = N : 0 · 0.5 = 0
V2 = P : 1

225 · 0 = 0
V2 = V : 0 · 0.5 = 0

max:0

m13 m12 · f3

V3 = V V2 = D : 0 · 0 = 0
V2 = N : 0 · 0.5 = 0
V2 = P : 1

225 · 0 = 0
V2 = V : 0 · 0 = 0

max:0
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and we obtain:

V4 m13

D 1/450
N 1/450
P 0
V 0

. Then,

W4 m14

flies 1
... 0

, and

V4 m15

D 0
N 2/9
P 0
V 0.4

.

To maximize the product of probabilities of V4 we calculate:
V4 m13 ·m15

D 1
450 · = 0

N 1
450 ·

2
9 = 1/2025

P 0 · 0 = 0
V 0 · 0.4 = 0

and we obtain V ∗
4 = N , which we use in further messages, as a “hard-wired”

value. We calculate

V4 m16

D 0
N 2/9
P 0
V 0

, and for m17 use only V4 = N in m16 · f3:

m16 · f3
2
9 · 1 = 2/9
2
9 · 0 = 0

2
9 · 0.5 = 1/9
2
9 · 0.5 = 1/9

, and we obtain:

V3 m17

D 2/9
N 0
P 1/9
V 1/9

.

To find optimal V3 we calculate:
V3 m9 ·m11 ·m17

D 0.01 · 0 · 2
9 = 0

N 0.01 · 0 · 0 = 0
P 1

180 · 0.8 · 1
9 = 1/2025

V 1
180 · 0 ·

1
9 = 0

and we obtain V ∗
3 = P .

Then,

V3 m18 = m17 ·m11

D 0
N 0
P 1

9 · 0.8 = 4/45
V 0

,

V2 m19 = m18 · f3 for V3 = P
D 4

45 · 0 = 0
N 4

45 ·
1
2 = 2/45

P 4
45 · 0 = 0

V 4
45 ·

1
2 = 2/45

.

To find optimal V2 we calculate:
V2 m19 ·m5 ·m7

D 0 · 0 · 1
3 = 0

N 2
45 · 0.1 · 1

9 = 1/2025
P 0 · 0.1 · 0.2 = 0
V 2

45 ·
1
18 · 0.2 = 1/2025

and we can choose either N or V . Let us choose V ∗
2 = V .

V2 m20 = m7 ·m19

D 0
N 0
P 0
V 0.2 · 2

45 = 2/225

,

V1 m21 = m20 · f3 for V2 = V
D 2

225 · 0 = 0
N 2

225 ·
1
2 = 1/225

P 2
225 · 0 = 0

V 2
225 · 0 = 0

.

To find optimal V1 we calculate:
V1 m1 ·m3 ·m21

D 0 · 0 · 0 = 0
N 0.5 · 2

9 ·
1

225 = 1/2025
P 0.5 · 0 · 0 = 0
V 0 · 0.4 · 0 = 0

and we obtain V ∗
1 = N .
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13 Probabilistic Context-Free Grammar (PCFG)
Reading: Chapters 13 and 14
Probabilistic Context-Free Grammar (PCFG) is also known as Stochastic Context-Free Grammar (SCFG).
Both, n-gram model and HMM are linear models, which may not be most suitable to model the structured nature
of natural language syntax. While Bayesian Networks could be one way of capturing structured nature of language
in a probabilistic way, PCFGs represent another way, which is directly derived from the Context-Free Grammar
formalism.
For example, in language modelling applied to the sentence:

The velocity of the seismic waves rises to. . .

a linear model will likely assign a higher probability to the word “rise” after the plural “waves” than to the word
“rises,” which actually correctly appears in the sentence and agrees with the head “velocity” of the noun phrase.
As previously described, context-free grammars represent a structural model for describing syntax. For example,
the syntax of the sentence “Time flies like an arrow.” could be represented as the following context-free parse tree:

Time arrow.like anflies
N V P D N

NP
NP

PP

VP

S

There are known efficient parsing algorithms for context-free grammars in the theory of of formal languages, and
applications such as design of compilers and interpreters for programming languages. Two examples of such
parsing approaches are recursive descent parsing and shift-reduce LR parsing. A large obstacle in applying these
parsers to the problem of NL parsing is in the requirement that the language is unambiguous. Natural languages are
inherently ambiguous and a parser for natural language must handle ambiguous grammars and ambiguous input.
For example, if we assume a different meaning of the above sentence, we obtain a different parse tree, like the
following one:

Time arrow.like anflies
N N V D N

NP

VP

NP

S

The above two trees induce the following CFG:

S → NP VP VP → V NP N → time V → like
NP → N VP → V PP N → arrow V → flies
NP → N N PP → P NP N → flies P → like
NP → D N D → an

To have a complete CFG specification, we need to add that the set of terminals is {‘time’, ‘arrow’, ‘flies’, ‘an’,
‘like’}, the set of non-terminals is { S, NP, VP, D, N, PP, P, V}, and the start symbol is S.
If we parse the same sentence using this grammar, then we will obtain at least two different parse trees. To make
parsing more usable, we need a way of assigning a score or probability to each tree, so we can always choose the
“best” parse tree in a certain sense.
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13.1 PCFG as a Probabilistic Model
To transform a CFG into a probabilistic model we model derivations as stochastic process in a generative way. For
example, the left-most derivation corresponding to the first parse tree described above is:

S ⇒ NP VP ⇒ N VP ⇒ time VP ⇒ time V PP ⇒ time flies PP ⇒ time flies P NP
⇒ time flies like NP ⇒ time flies like D N ⇒ time flies like an N ⇒ time flies like an arrow

At each step of the derivation, given a non-terminal that needs to be re-written, we usually have several options,
corresponding to several rules that have this non-terminal on the left-hand side.
Hence, we calculate the probability of the tree by multiplying probabilities of all rules occurring in the tree:

P(first tree) = P(N → time)P(V → flies)P(P → like)P(D → an)
P(N → arrow)P(NP → N)P(NP → D N) . . .P(S → NP VP)

If we assign the following probabilities to the rules:

S → NP VP /1 VP → V NP /.5 N → time /.5
NP → N /.4 VP → V PP /.5 N → arrow /.3
NP → N N /.2 PP → P NP /1 N → flies /.2
NP → D N /.4 D → an /1

V → like /.3
V → flies /.7
P → like /1

then the probability of the first tree is 0.0084, and the probability of the second tree is 0.00036. We can conclude
that the first tree is more likely, which should correspond to our intuition.
The probability assigned to a rule N → α is the probability P(N → α|N), so if N → α1, N → α2, . . . , N → αn

are all rules with the nonterminal N on its left hand side, then

n∑
i=1

P(N → αi) = 1

These probabilities are easily learned from a set of parse trees, usually called parse treebank, by counting the
number of occurrences of distinct rules.
This model is a language model, since the sum of probabilities of all sentences in the language is 1. Actually, in
order to be a language model, we also require that the grammar is proper, i.e., that all infinite trees have probabil-
ity 0, which is not always the case. We will not go into further details regarding this question here, except noting
that it has been proved that any PCFG with probabilities induced from a treebank is proper.
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