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Regular Expressions, Finite State Machines and The Pumping Lemma 

Regular Expressions 

A regular expression (regex), often called a pattern, is an expression that describes a set of strings. They 
are usually used to give a concise description of a set, without having to list all elements. For example, the 
set containing the three strings "Handel", "Händel", and "Haendel" can be described by the pattern 
H(ä|ae?)ndel (or alternatively, it is said that the pattern matches each of the three strings). In most 
formalisms, if there is any regex that matches a particular set then there are an infinite number of such 
expressions. Most formalisms provide the following operations to construct regular expressions. 

Abbreviated History: The origins of regular expressions lie in automata theory and formal language 
theory, both of which are part of theoretical computer science, which study models of computation 
(automata) and ways to describe and classify formal languages. In the 1950s, mathematician Steven 
Kleene described these models using his mathematical notation called regular sets. The SNOBOL 
language was an early implementation of pattern matching, but not identical to regular expressions. Ken 
Thompson built Kleene's notation into the editor QED as a means to match patterns in text files. He later 
added this capability to the Unix editor ed, which eventually led to the popular search tool grep's use of 
regular expressions ("grep" is a word derived from the command for regular expression searching in the 
ed editor: g/re/p where re stands for regular expression). Since that time, many variations of Thompson's 
original adaptation of regular expressions have been widely used in Unix and Unix-like utilities including 
expr, AWK, Emacs, vi, and lex. 

Perl and Tcl regular expressions were derived from a regex library written by Henry Spencer though Perl 
later expanded on Spencer's library to add many new features. Philip Hazel developed PCRE (Perl 
Compatible Regular Expressions), which attempts to closely mimic Perl's regular expression functionality, 
and is used by many modern tools including PHP and Apache HTTP Server. Part of the effort in the 
design of Perl 6 is to improve Perl's regular expression integration, and to increase their scope and 
capabilities to allow the definition of parsing expression grammars. The result is a mini-language called 
Perl 6 rules, which are used to define Perl 6 grammar as well as provide a tool to programmers in the 
language. These rules maintain existing features of Perl 5.x regular expressions, but also allow BNF-style 
definition of a recursive descent parser via sub-rules. 

The use of regular expressions in structured information standards for document and database modeling 
started in the 1960s and expanded in the 1980s when industry standards like ISO SGML (precursor was 
ANSI "GCA 101-1983") consolidated. The kernel of the structure specification language standards are 
regular expressions.  

Formally: Definition: Regular expressions can be defined in formal language theory. Regular 
expressions consist of constants and operators that denote sets of strings and operations over these sets, 
respectively. The following definition is standard, and found as such in most textbooks on formal 
language theory. Given a finite alphabet Σ, the following constants are defined: 

• (empty set) Φ denoting the set  
• (empty string) ε denoting the "empty" string, with no characters at all. 
• (literal character) a in Σ denoting a character in the language. 

The following operations are defined: 
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• (concatenation) RS denoting the set { αβ | α in R and β in S }. For example {"ab", "c"}{"d", "ef"} = 
{"abd", "abef", "cd", "cef"}. 

• (alternation) R | S denoting the set union of R and S. For example {"ab", "c"}|{"ab", "d", "ef"} = 
{"ab", "c", "d", "ef"}. 

• (Kleene star) R* denoting the smallest superset of R that contains ε and is closed under string 
concatenation. This is the set of all strings that can be made by concatenating zero or more strings 
in R. For example, {"ab", "c"}* = {ε, "ab", "c", "abab", "abc", "cab", "cc", "ababab", "abcab", ... }. 

To avoid parentheses it is assumed that the Kleene star has the highest priority, then concatenation and 
then set union. If there is no ambiguity then parentheses may be omitted. For example, (ab)c can be 
written as abc, and a|(b(c*)) can be written as a|bc*. Many textbooks use the symbols ∗, +, or ( for 
alternation instead of the vertical bar. 

Examples: 

• a|b* denotes {  ε, a, b, bb, bbb, ...} 
• (a|b)* denotes the set of all strings with no symbols other than a and b, including the empty string: 

{ε, a, b, aa, ab, ba, bb, aaa, ...} 
• ab*(c|ε) denotes the set of strings starting with a, then zero or more bs and finally optionally a c: 

{a, ac, ab, abc, abb, abbc, ...} 

Expressive power and compactness: The formal definition of regular expressions is purposely 
parsimonious and avoids defining the redundant quantifiers ? and +, which can be expressed as follows: 
a+ = aa*, and a? = (a|ε). Sometimes the complement operator is added; Rc denotes the set of all strings 
over Σ* that are not in R. In principle, the complement operator is redundant, as it can always be 
circumscribed by using the other operators. However, the process for computing such a representation is 
complex, and the result may require expressions of a size that is double exponentially larger. 

Regular expressions in this sense can express the regular languages, exactly the class of languages 
accepted by deterministic finite automata. There is, however, a significant difference in compactness. 
Some classes of regular languages can only be described by deterministic finite automata whose size 
grows exponentially in the size of the shortest equivalent regular expressions. The standard example are 
here the languages Lk consisting of all strings over the alphabet {a,b} whose kth-last letter equals a. For 
example, a regular expression describing L4 is given by (a | b) * a(a | b)(a | b)(a | b).  

It is known that every deterministic finite automaton accepting the language Lk must have at least 2k 
many states. Luckily, there is a simple mapping from regular expressions to the more general 
nondeterministic finite automata (NFAs) that does not lead to such a blowup in size; for this reason NFAs 
are often used as alternative representations of regular languages. NFAs are a simple variation of the type-
3 grammars of the Chomsky hierarchy. 

Finally, it is worth noting that many real-world "regular expression" engines implement features that 
cannot be described by the regular expressions in the sense of formal language theory. 

Some Definitions 

Finite state machine 
Definition: A model of computation consisting of a set of states, a start state, an input alphabet, and a 
transition function that maps input symbols and current states to a next state. Computation begins in the start 
state with an input string. It changes to new states depending on the transition function. There are many variants, 
for instance, machines having actions (outputs) associated with transitions (Mealy machine) or states (Moore 
machine), multiple start states, transitions conditioned on no input symbol (a null) or more than one transition 
for a given symbol and state (nondeterministic finite state machine), one or more states designated as accepting 
states (recognizer), etc.  Also known as finite state automaton.  

Turing machine 
Definition: A model of computation consisting of a finite state machine controller, a read-write head, and an 
unbounded sequential tape. Depending on the current state and symbol read on the tape, the machine can change 
its state and move the head to the left or right. Unless otherwise specified, a Turing machine is deterministic.  

Deterministic finite state machine 
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Definition: A finite state machine with at most one transition for each symbol and state. Also known as DFA, 
deterministic finite automaton.  

Nondeterministic finite state machine 
Definition: A finite state machine whose transition function maps inputs symbols and states to a (possibly 
empty) set of next states. The transition function also may map the null symbol (no input symbol needed) and 
states to next states.  Also known as NFA, nondeterministic finite automaton.  

Mealy machine 
Definition: A finite state machine which produces an output for each transition.  

Moore machine 
Definition: A finite state machine that produces an output for each state.  

Markov chain 
Definition: A finite state machine with probabilities for each transition, that is, a probability that the next state 
is sj given that the current state is si.  

Hidden Markov model 
Definition: A variant of a finite state machine having a set of states, Q, an output alphabet, O, transition 
probabilities, A, output probabilities, B, and initial state probabilities, Γ. The current state is not observable. 
Instead, each state produces an output with a certain probability (B). Usually the states, Q, and outputs, O, are 
understood, so an HMM is said to be a triple, (A, B, Γ).  

Formal Definition:  
• A = {aij = P(qj at t+1 | qi at t)}, where P(a | b) is the conditional probability of a given b, t ≥ 1 is time, and qi 

∈Q.  
Informally, A is the probability that the next state is qj given that the current state is qi.  

• B = {bik = P(ok | qi)}, where ok ∈ O.  
Informally, B is the probability that the output is ok given that the current state is qi.  

• Γ= {pi = P(qi at t=1)}.  
Also known as HMM.  

Equivalence of finite state machines and regular expression languages 

A language is given by a regular expression if and only if it is a language of some finite state machine. If a 
language is given by one of these two ways, we can always convert to the other if this is more convenient. 

• regular expressions can be easier to specify textually 
• it is easier to check whether a string is accepted by a finite state machine 

Some finite state machine accepts every language given by a regular expression. By induction on the 
structure of regular expressions, we construct the finite state machine that accepts this language. 

For the base case, observe that we can easily construct finite state machines for empty language ε, and a 
finite state machine for a singleton language  a for a ∈ ∑ . 

For the inductive step, we use closure properties of finite state machines for the cases of union, 
concatenation, and iteration. 

Every language accepted by a finite state machine is given by some regular expression 

Finite state machines with regular expression labels. We first generalize the notion of a finite state 
automaton so that we can label its edges not only with elements of ∑ as in the standard definition of finite 
state machine and with epsilon transitions as in finite state machine with epsilon transitions, but with 
arbitrary regular expressions. 

An accepting execution for such a generalized finite state machine is a sequence of states and regular 
expressions  q0, r1, r2, …, rn, qn with q∈ F, and the accepted strings of that execution are all strings in the 
union of  L( r1, r2, …, rn)  over all such accepting sequences. 

Note that if all regular expressions are elements of ∑, the definition reduces to the standard definition of 
finite state machine. 

Preparing for conversion to regular expression: To convert a finite state machine into a regular 
expression, we first view it as a generalized finite state machine, and then eliminate states of the state 
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machine one by one. We start the process by creating a fresh initial state  q1 and fresh final state qf and 
expressing all final states in F by  transitions to qf. We let {qf} be the new set of final states. For any pair of 
states, we then ensure that there is exactly one edge between them: 

• if there was no edge, we introduce an edge with the label is ϕ; 
• if there are multiple edges with labels a1, …, an, we introduce instead one edge whose label is the 

regular expression a1 | … |an. 

Elimination step: We show how to eliminate a state q (we assume q is not initial and not a final state). 

• let the self-loop edge labelled q be r 
• for every two states q1 and q2 (possibly equal), distinct from q: 
• suppose we have these regular expressions on edges: 

     r1   r1 
q1  →  q  →  q2 

• extend label from q1  to q2 with r1r*r1 

At the end, we are left with one non-empty edge from qi  to qf, whose label is the desired regular 
expression. 

Exercise 

Consider alphabet ∑ = {a, b}. A string s∈∑* is desperate if it contains ‘aaa’ as a substring. Construct a 
regular expression that describes the set of all strings that are not desperate. 

One solution:  ((ε|a|aa)b)* ( ε|a|aa) 

What, in simple terms, is the pumping lemma? 

To put in layman's terms is difficult, but basically regular expressions should have a non-empty substring 
within the expression that can be repeated as many times as you wish while the entire “new  formed word” 
remains valid for the language. 

In practice, pumping lemmas are not sufficient to prove a language correct, but rather as a way to do a 
proof by contradiction to show a language does not fit in the class of languages (Regular or Context-Free) 
by showing the pumping lemma does not work for the language. 

The answer above is acceptable, but the answer does not feel like it explains the purpose of the pumping 
lemma. 

The pumping lemma is a simple proof to show that a language is not regular, meaning that a Finite State 
Machine cannot be built for it. The canonical example is the language (an)(bn). This is the simple language 
which is just any number of a’s, followed by the same number of b’s. So the strings 

ab       aabb        aaabbb        aaaabbbb        etc. are in the language, but 

aab      bab         aaabbbbbb       etc. are not. 

It's simple enough to build a FSM for these examples: 

This one will work all the way up to 
n=4. The problem is that our 
language didn't put any constraint on 
n, and Finite State Machines have to 
be, well, finite. No matter how many 
states I add to this machine, someone can give me an input where n equals the number of states plus one 
and my machine will fail. So if there can be a machine built to read this language, there must be a loop 
somewhere in there to keep the number of states finite. With these loops added: 

with (a*) representing any all of the 
strings in our language will be 
accepted, but there is a problem. 
After the first four as, the machine 
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loses count of how many a’s have been input because it stays in the same state. That means that after four, 
I can add as many a’s as I want to the string, without adding any b’s, and still get the same return value. 
This means that the strings 

aaaa(a*)bbbb 

number of a’s, will all be accepted by the machine even though they obviously aren't all in the language. In 
this context, we would say that the part of the string (a*) can be pumped. The fact that the Finite State 
Machine is finite and n is not bounded, guarantees that any machine which accepts all strings in the 
language must have this property. The machine must loop at some point, and at the point that it loops the 
language can be pumped. Therefore no Finite State Machine can be built for this language, and the 
language is not regular. 

Remember that regular expressions and finite state machines are equivalent, then replace a and b with 
opening and closing Html tags which can be embedded within each other, and you can see why it is not 
possible to use regular expressions to parse Html 

Another try 

By definition regular languages are those recognized by a finite state automaton. Think of the FSM as a 
labyrinth: states are rooms, transitions are one-way corridors between rooms, there's an initial room, and 
an exit (final) room. As the name 'finite state automaton' says, there is a finite number of rooms. Each 
time you travel along a corridor, you jot down the letter written on its wall. A word can be recognized if 
you can find a path from the initial to the final room, going through corridors labelled with its letters, in 
the correct order. 

The pumping lemma says that there is a maximum length (the pumping length) for which you can wander 
through the labyrinth without ever going back to a room through which you have gone before. The idea is 
that since there are only so many distinct rooms you can walk in, past a certain point, you have to either 
exit the labyrinth or cross over your tracks. If you manage to walk a longer path than this pumping length 
in the labyrinth, then you are taking a detour : you are inserting a(t least one) cycle in your path that could 
be removed (if you want your crossing of the labyrinth to recognize a smaller word) or repeated (pumped) 
indefinitely (allowing to recognize a super-long word). 

There is a similar lemma for context-free languages. Those languages can be represented as word 
accepted by pushdown automata, which are finite state automata that can make use of a stack to decide 
which transitions to perform. Nonetheless, since there is still a finite number of states, the intuition 
explained above carries over, even through the formal expression of the property may be slightly more 
complex. 

Sleep on it. An experiment conducted by German neurologists and documented in Nature, volume 427 
(2004), p. 352 hypothesizes that students who get more sleep are able to solve tricky problems better 
than students who are sleep deprived. The problem they used involves a string consisting of the three 
digits 1, 4, and 9. "Comparing" two digits that are the same yields the original digit; comparing two 
digits that are different yields the missing digit. For example f(1, 1) = 1, f(4, 4) = 4, f(1, 4) = 9, f(9, 1) = 4. 
Compare the first two digits of the input string, and then repeatedly compare the current result with the 
next digit in the string. Given a specific string, what number do you end up with? For example, if the 
input is string 11449494, you end up with 9. 

 1 1 4 4 9 4 9 4 

     1 9 1 4 4 1 9 

Postscript: Parsing Html The Cthulhu Way 
Cthulhu is a fictional cosmic entity created by horror author H. P. Lovecraft in 1926, first 

appearing in the short story "The Call of Cthulhu" when it was published in Weird Tales in 1928. 

Among programmers of any experience, it is generally regarded as A Bad Ideatm to attempt to parse 
HTML with regular expressions. How bad of an idea? It apparently drove one Stack Overflow user to the 
brink of madness: 

You can't parse HTML with regex. Because HTML can't be parsed by regex. Regex is not a tool that can be 
used to correctly parse HTML. As I have answered in HTML-and-regex questions here so many times 
before, the use of regex will not allow you to consume HTML. 
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Regular expressions are a tool that is insufficiently sophisticated to understand the constructs employed 
by HTML. HTML is not a regular language and hence cannot be parsed by regular expressions. Regex 
queries are not equipped to break down HTML into its meaningful parts. so many times but it is not 
getting to me. Even enhanced irregular regular expressions as used by Perl are not up to the task of 
parsing HTML. You will never make me crack. HTML is a language of sufficient complexity that it cannot 
be parsed by regular expressions. 

Even Jon Skeet cannot parse HTML using regular expressions. Every time you attempt to parse HTML 
with regular expressions, the unholy child weeps the blood of virgins, and Russian hackers pwn your 
webapp. Parsing HTML with regex summons tainted souls into the realm of the living. HTML and regex 

go together like love, marriage, and ritual infanticide. The 
<center> cannot hold it is too late. The force of regex and HTML 
together in the same conceptual space will destroy your mind like 
so much watery putty. If you parse HTML with regex you are 
giving in to Them and their blasphemous ways which doom us all 
to inhuman toil for the One whose Name cannot be expressed in 
the Basic Multilingual Plane, he comes. 

That's right, if you attempt to parse HTML with regular 
expressions, you're succumbing to the temptations of the dark god 
Cthulhu's … er … code. 

This is all good fun, but the warning here is only partially tongue in cheek, and it is born of a very real 
frustration. 

I have heard this argument before. Usually, I hear it as justification for seeing something like the following 
code: 

 # pull out data between <td> tags 
($table_data) = $html =~ /<td>(.*?)<\/td>/gis; 

"But, it works!" they say "It's easy!" - "It's quick!" - "It will do the job just fine!" 

I berate them for not being lazy. You need to be lazy as a programmer. Parsing HTML is a solved 
problem. You do not need to solve it. You just need to be lazy. Be lazy, use CPAN and use 
HTML::Sanitizer. It will make your coding easier. It will leave your code more maintainable. You won't 
have to sit there hand-coding regular expressions. Your code will be more robust. You won't have to bug 
fix every time the HTML breaks your crappy regex 

For many novice programmers, there's something unusually seductive about parsing HTML the Cthulhu 
way instead of, y'know, using a library like a sane person. Which means this discussion gets reopened 
almost every single day on Stack Overflow. The above post from five years ago could be a discussion from 
yesterday. I think we can forgive a momentary lapse of reason under the circumstances. 

Like I said, this is a well understood phenomenon in most programming circles. However, I was surprised 
to see a few experienced programmers in metafilter comments actually defend the use of regular 
expressions to parse HTML. I mean, they've heeded the Call of Cthulhu … and liked it. Many programs 
will neither need to, nor should, anticipate the entire universe of HTML when parsing. In fact, designing a 
program to do so may well be a completely wrong-headed approach, if it changes a program from a few-
line script to a bullet-proof commercial-grade program which takes orders of magnitude more time to 
properly code and support. Resource expenditure should always (oops, make that very frequently, I about 
overgeneralized, too) be considered when creating a programmatic solution. 
 

In addition, hard boundaries need not always be an HTML-oriented limitation. They can be as simple as 
"work with these sets of web pages", "work with this data from these web pages", "work for 98% users 
98% of the time", or even "OMG, we have to make this work in the next hour, do the best you can". 

We live in a world full of newbie PHP developers doing the first thing that pops into their collective heads, 
with more born every day. What we have here is an ongoing education problem. The real enemy isn't 
regular expressions (or, for that matter, goto), but ignorance. The only crime being perpetrated is not 
knowing what the alternatives are. 



CSE 6390E Computational Linguistics  
  

7

So, while I may attempt to parse HTML using regular expressions in certain situations, I go in knowing 
that: 

• It's generally a bad idea. 

• Unless you have discipline and put very strict conditions on what you're doing, matching HTML with 
regular expressions rapidly devolves into madness, just how Cthulhu likes it. 

• I had what I thought to be good, rational, (semi) defensible reasons for choosing regular expressions 
in this specific scenario. 

It's considered good form to demand that regular expressions be considered verboten, totally off limits for 
processing HTML, but I think that's just as wrongheaded as demanding every trivial HTML processing 
task be handled by a full-blown parsing engine. It's more important to understand the tools, and their 
strengths and weaknesses, than it is to knuckle under to knee-jerk dogmatism. 

So, yes, generally speaking, it is a bad idea to use regular expressions when parsing HTML. We should be 
teaching neophyte developers that, absolutely. Even though it's an apparently never-ending job. But we 
should also be teaching them the very real difference between parsing HTML and the simple expedience 
of processing a few strings. And how to tell which is the right approach for the task at hand. 

Whatever method you choose -- just don't leave the <cthulhu> tag open, for humanity's sake. 
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Appendix 2: COS 126 Lecture 15: Finite-State Automata 

slide 1 - Regular Expression 

Here's a recursive definition of what a regular expresions is:  

i.) base cases: 

• the empty set 
• a single character in the alphabet (In most examples we'll look at, we'll use the binary 

digits 0 and 1 as our alphabet.) 

ii.) if a and b are regular expressions (for our alphabet), then so are: 

• (a) parentheses can be used to group regular expressions 
• ab concatenation of two regular expressions 
• a+b union: if both a and b are regular expressions, then so is 'a or b' 
• a* zero or more of regular expression 'a' 

Regular expressions define a language (not uniquely.) Given a regular expression, you can ask whether a 
particular string is in that language. For each of the given examples, I've listed a few of the strings which 
are in the language and a few that are not. 

• (10)*  
o YES: the empty string, 10, 1010, 101010, ... 
o NO: 0, 1, 00, 11, 0101, 0110, and any other strings not like the above pattern! 

• (0+011+101+110)*  
o YES: the empty string, 0, 00, 000, 011, 101, 110, 0011, 0101, 0110, 1010, 1100, 

011101, 011110, and many more! 
o NO: 1, 00, 01, 10, 11, 111, 1111, 001, 010, 100, and others 

• (01*01*01*)*  
o YES: the empty string, 000, 0100, 0010, 0001, 000000, 0000111010111 
o NO: any strings that start with 1, any strings which don't have a multiple-of-3 0's, 

and others?? 
 

slide 2 - Formal Languages 

For each of the examples given, how would you write the corresponding regular expression?  

1. all bit strings that begin with 0 and end with 1 
2. all bit strings whose number of 0's is a multiple of 5 
3. all bit strings with more 1's than 0's 
4. all bit strings with no consecutive 1's 

answers 

1. 0 (0 + 1)* 1  
2. (1* 0 1* 0 1* 0 1* 0 1* 0 1*)*  
3. you can't do this with a regular expression. How can you tell? the clue is that this language 

requires counting. Regular expressions can't 'count.'  
4. This one is hard - I wouldn't expect you to get it. My answer probably isn't the best one, either: 

(0* + (01)*)* + 1(0* + (01)*)* 
(The first part represents strings that start with 0, (and the empty string), while the second 
represents those strings which start with 1)  

 

slide 3 - Finite State Automata 

In precept, I referred to a finite state machine. This is the same thing: an FSA. Each FSA has a fixed 
number of states (hence the 'finite' part of the name.) There is always a start state. One or more states may 
be designated as 'accept' states. (The start state may be an accept state.) An FSA accepts a given input 
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string if and only if you are 'in' an accept state when you finish reading the string. How do you use an FSA 
to read a string?  

You read the input string one character at a time (left to right) and start in the 'start' state of the FSA. That 
start state will have arrows labeled with different characters in the alphabet. (Let's assume the FSA is 
"deterministic" - I'll explain what this means, shortly.) In a deterministic FSA, there will be exactly one 
arrow for each possible input character. So, for the binary alphabet we've been using, there will be two 
arrows coming out of each state - one labeled '0,' the other labeled '1.' For concreteness, let's assume that 
the first digit of the string is a 0. We'll read this 0 and move to the state the '0' arrow points to. Now, read 
the next character in the input string and follow the corresponding arrow to the next state. Continue like 
this until you have read all the characters in the input string. If you 'end up' in an accept state, we say that 
the FSA recognizes the input string, or, equivalently, that the input string is part of th elanguage described 
by the FSA. (This is just like saying that a string is in a language defined by a regular expression. 

If you look at the examples in this lecture slide, you can see the order of the states encountered (or 
'traveled through') as we read the input string. The states in this example are numbered. By default, state 
0 is the start state. Accept states are indicated by double circles. 

You should learn to figure out what language a particular FSA represents. The first example recognizes the 
language of all strings with the pattern 10 (10, 1010, 101010,...) The second example recognizes the 
language with an odd number of 0's. Trying out a few example input strings and looking for a pattern is a 
good way to start if you're stuck. Also, always be sure to check whether the empty set is in the language. 

 

slide 4 - An application 

This slide demonstrates the computational power of an FSA. On each arrow, the first number represents a 
character read in the input string. The second number (after the /) is the output generated. The chart on 
the right shows the output generated when the FSA is applied to the input string: 01010101 - the string 
00011101 is generated. Isolated 0's and 1's within the string are eliminated. Notice that this FSA doesn't 
really have an accept state. It's not recognizing a language; rather, it's performing a computation. This 
example demonstrates how powerful even a simple FSA can be.  

Pay particular attention to the state interpretations chart. If you're asked (on an exam, for example) to 
draw an FSA representing a given language, it's good to try to formuate the meaning of each state. 

In the first example on slide 3, here's the interpretation of each state: 

0: nothing read so far 
1: a 1 was just read 
2: two consective 1's read, OR two consecutive 0's read OR a 0 was read initially 
3: a 0 was read after state 1 
   i.e., a 0 was read after a 1 was read 

How do the state interpretations help you understand the FSA as a whole? State 3 is the accept state, 
because only strings with the pattern (10)* will end up in this state. State 2 has arrows ("transitions" is the 
correct terminology) for both 0 and 1 returning to it. This corresponds to the fact that once you've reached 
state 2, you've read input characters which are not in the language represented by the regular expression 
(10)*. So, you can never get to the accept state. In state 1, you've read strings of the form (10)*1. For an 
input string to be in the language, you must read a 0 next, and go to state 3. 

Interpreting states can help you find mistakes, too. In this example, you should notice that the empty 
string is in the language of strings (10)*. So, state 0 should be an accept state, too. The FSA drawn actually 
represents all strings of the form (10)(10)*. To fix the FSA, just make state 0 an accept state, too. 
(Remember: you can have more than 1 accept state!) 

Question: what are the interpretations of the states in the second example on slide 3? 
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slide 5 - C program to Simulate FSAs 

This C program simulates FSAs that operate on the binary alphabet: 0 and 1. The C program opens a file 
representing the FSA. (The file name is passed as a command line argument. See K&R section 5.10) The 
format of the file is a list of states, one line per state. For each state (line of the file), the destination state 
is given for each of the two possible inputs, 0 and 1. So, each line in the file will have two numbers. The 
first number corresponds to the '0 arrow.' The second number corresponds to the '1 arrow.' The value of 
the numbers is the number of the state the arrow points to. For the example given, the file will look like 
this:  

0 1 
2 0 
1 2 

Then, an input string is read from standard input. To run this program, you would type something like: 

a.out FSA_filename 11101010 

In each iteration of the while loop, the value of state is updated based on the current state and whether a 0 
or a 1 is read. At the end, if the state is 0 (the accept state), Accepted is printed. Otherwise, Rejected is 
printed. You should try tracing through the code while tracing through the FSA to make sure you 
understand it. 

 

slide 6 - A language that is not regular 

It's good to remember that regular languages can't count. (It's likely to show up on a multiple choice 
question.) A proof by contradiction is given for the simple case of counting the 0's and 1's for equality.  

 

slide 7 - Pushdown Automata 

Think of a Pushdown Automata (PDA) as an FSA + a stack. The stack stores extra information - it is the 
"memory" added to the FSA. In an FSA, the next state depended only on the current state and whether the 
input bit was a zero or a one. In a PDA, the next state will depend on the current state and the input bit 
AND the value of the bit on the top of the stack. Also, in addition to 'moving' to the next state, we can also 
update the stack by either POPPing the top item off the stack or PUSHing the current input bit onto the 
stack.  

Each arrow on the PDA has a 3 part value on it instead of just the input bit (like in an FSA.) The first part 
is the input bit (exactly the same as the FSA.) The second part is the value of the bit on the top of the 
stack. Instead of an ACCEPT state, we accept if the stack is empty, when we finish reading the string. If we 
ever try to POP an empty stack, we crash, meaning that the string is not in the language (rejected.) 

In the example given, we use the stack to hold the extra 0's or 1's. If, for example, we read 10111..., we'll 
use the stack to hold the extra 1's until enough 0's come along to POP them off the stack. 

 

slide 8 - Nondeterministic Machines 

A defining feature of the FSAs we've looked at so far is that they've all been deterministic. The American 
Heritage Dictionary defines determinism as "The philosophical doctrine that every event, act, and 
decision is the inevitable consequence of antecedents that are independent of the human will." In 
computer science, we use the adjective "deterministic" to describe machines, or automata in which 
decisions are forced. There is no real choice. In the FSA we've looked at, we never had to choose which 
state to go to next: we just followed the only arrow (transition) which was designated for the given input 
bit. In a nondeterministic FSA, instead of one arrow for each input bit, there may be 0 or more arrows. If 
there are more than one arrow, we need to 'choose' which arrow to follow. How can we interpret 
nondeterministic FSA?  

The basic concept is the same. We read the input string one bit at a time and move to the next state 
accordingly. If there is no arrow for the input bit, we have 'crashed.' The input string is rejected. If there is 
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only one arrow for the input bit, follow it to the next state (just like in a deterministic FSA.) If there is 
more than one, just choose one, follow it and continue with the next input bit. Here's the tricky part: we 
say that the string is recognized by the FSA (accepted) if there is any way to get to an accept state. Let's 
look at the example given on the lecture slide: 

01 -we start in state 0. then, we have the choice of going to state 1 or state 2. If we choose state2, we then 
stay in state 2 when we read the '1.' (result=rejected.) However, if we choose state 1, we move to state 3 
when we read the 1, so the result is ACCEPT. Since there is a way to end up in the accept state, 01 is 
recognized by this FSA  

0111110101 - the sequence of states that leads to the accept state is: 0,1,3,2,2,2,2,0,0,1,3 

01000010110 - the sequence of states that leads to the accept state is: 0,1,3,1,1,1,1,3,1,3,2,3 

01000 - there is no sequence of states that leads to the accept state. We start in state 0, stay in state 0, and 
then if we move to state 1, we'll stay there and never leave. If we instead choose to move to state 2, we still 
won't end up in state 3... 

 

slide 9 - Nondeterminism doesn't help in FSAs 

This slide demonstrates a method for converting a nondeterministic FSA to a deterministic one. This is 
the procedure:  

If there are N states, list all the N digit binary numbers. Each binary number represents some 
combination of the states. 0000 represents none of the states. 0110 represents states 1 and 2 (not 0 and 
3.) 1110 represents states 0 and 1 and 2. etc. Each of these binary permutations will represent a state in 
our deterministic FSA (but we might not use all of them.) For each new state, you need to determine its 
'arrows.' That is, you need to determine what the next state will be for a '0' input and a '1' input. To make 
it easier, we'll use the decimal representation of each of our binary numbers to indicate the number of the 
corresponding state.  

It's not as complicated as it sounds, but it does take a while. Let's start constructing the table in the 
example: 

0001 - in the n-FSA, state 3 had a 0-arrow going to state 1, and a 1-arrow going to state 2. The binary 
representation of state 1 is 0100. The binary representation of state 2 is 0010. So, the 0-arrow for our 
state 1 (0001) will go to 4 (0100) and the 1-arrow will go to 2 (0010).  

0010 - in the n-FSA, state 2 has a 0-arrow going to states 0 (1000) and 3 (0001), and a 1-arrow going to 
state 2 (0010). So, in the deterministic FSA, our state 2 (0010) will have a 0-arrow going to state 9 (1001), 
and a 1-arrow going to state 2. Notice that state 9 represents the combination of states 0 and 3 - (1001). 

0011 - this state (3) represents the combination of states 2 and 3. So, we need to look at the transitions 
(arrows) of both states in the n-FSA. For the 0-arrow, the destinations are states 1 and 0 and 3. For the 1-
arrow, the destinations are 2 for both states. In the deterministic FSA, then, for state 3, we'll have a 0-
arrow going to state 13 (1101) (wrong on the slide) and the 1-arrow going to state 2 (0010). 

If any state doesn't have any arrows for a particular input bit in the n-FSA, we'll make the corresponding 
arrow go to state 0 in the deterministic FSA. 

Notice that each state in the deterministic FSA will have exactly 2 arrows going from it - one for 0 and one 
for 1. If any states in the deterministic FSA we create don't have any arrows going to it (besides the start 
state), we can eliminate those states. 

One more thing: we haven't specified which states are the start and accept states. The start state will 
remain the same. If state 0 was the start state, then state 8 will be the new start state (1000). Any states in 
the new FSA which include an accept state as part of their combinations of states will be an accept state. 
In our example, if state 3 (in the n-FSA) is the accept state, then the accept states will be 1 (0001), 3 
(0011), 5 (0101), 7 (0111), 9 (1001), 11 (1011), 13 (1101), and 15 (1111). 



CSE 6390E Computational Linguistics  
  

14

You can probably see that this would take a long time to do (especially on an exam) even for such a simple 
FSA. In precept, I can show you how I convert an n-FSA to a deterministic one with a different method. (It 
would take too long to try to explain without pictures, and I don't have time to create the graphics for it 
right now...) 

 

slide 10 - FSAs are equivalent to REs 

This slide is an overview of a proof demonstrating that FSAs and REs are equivalent. The proof that 
NFSAs and FSAs are equivalent is by construction: given any NFSA, we can construct an equivalent FSA. 
This slide shows that for any RE, we can construct an NFSA. One thing I haven't mentioned yet, which is 
important for understanding this slide is that in N-FSA you can have transitions between states which 
correspond to the null character (neither 0 or 1). You have the choice of following these arrows before 
reading the next character in the input string. The connecting lines in the rules listed are these null-
arrows.  

For example, for the simple regular expression: 10 + 1 

             state 1 ---> state 2 
           /          1          \0 
start state                       accept state  
           \            1        / 
            state 3 ------------- 

OK, let me explain the picture. Coming out of the start state are two arrows (pretend), neither of which 
has any input bit associated with it. Initially, you can just choose which one to follow. Going the top route, 
you need to read a 1 followed by a 0 to get to the accept state. Going the bottom direction, you need to 
read a 1 to get to the accept state. Anything more than this simple example would be too hard to draw. 

The 'rules' on this slide can help you construct a FSA from a given regular expression. Basically, a + in a 
RE corresponds to 'branching' in your FSA. And basically, a * in a RE corresponds to 'loops' in your FSA. 

 

slides 11 & 12 - Nondeterminism does help in PDAs & Turing Machines 

The main thing to remember is that non-deterministic FSAs and deterministic FSAs are equivlalent. Non-
deterministic PDAs are more powerful than deterministic ones; that is, you can recognize a broader class 
of languages with a nondeterministic PDA. Turing machines can recognize an even more broad class of 
languages.  

Turing machines are the same type of thing that FSAs and PDAs are. You can still think of reading an 
input string and 'moving' through the states accordingly. Like the PDAs, you have additional information 
to consider. Instead of a stack, you have a 'tape.' Think of the tape as a long strip of paper onto which you 
can write. The initial input is written on the tape so that you can read it. Depending on your current state 
and what you read, you can write a bit, move left or right, and move to a new state. 

A Turing Machine has no restrictions on the tape. You can even think of having multiple tapes, if you need 
them (but you don't.) This type of automata is so powerful that non-determinism doesn't make it any 
more powerful. 


