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Abstract What is a statistical method and how can it be used in natural language
processing (NLP)? In this paper, we start from a definition of NLP as concerned with
the design and implementation of effective natural language input and output com-
ponents for computational systems. We distinguish three kinds of methods that are
relevant to this enterprise: application methods, acquisition methods, and evaluation
methods. Using examples from the current literature, we show that all three kinds
of methods may be statistical in the sense that they involve the notion of probability
or other concepts from statistical theory. Furthermore, we show that these statistical
methods are often combined with traditional linguistic rules and representations. In
view of these facts, we argue that the apparent dichotomy between “rule-based” and
“statistical” methods is an over-simplification at best.

1 Introduction

In the current literature on natural language processing (NLP), a distinction is often made be-
tween “rule-based” and “statistical” methods for NLP. However, it is seldom made clear what
the terms “rule-based” and “statistical” really refer to in this connection. Is it the knowledge
of language embodied in the respective methods? Is it the way this knowledge is acquired?
Or is it the way the knowledge is applied?

In this paper, we will try to throw some light on these issues by examining the different
ways in which NLP methods deserve to be called “statistical”, an exercise that will hopefully
throw some light also on methods that do not deserve to be so called. We hope to show that
statistics can play a role in all the major categories of NLP methods, that many of the “rule-
based methods” actually involve statistics, and that many of the “statistical methods” employ
quite traditional linguistic rules. We will therefore conclude that a more fruitful discussion
of the methodology of natural language processing requires a more articulated conceptual
framework, to which the present paper can be seen as a contribution.

2 NLP: Problems, Models and Methods

According to the recently publishedHandbook of Natural Language Processing[17, p. v],
NLP is concerned with “the design and implementation of effective natural language input
and output components for computational systems”. The most important problems in NLP
therefore have to do with natural language input and output. Here are a few typical and un-
controversial examples of such problems:



� Part-of-speech tagging: Annotating natural language sentences or texts with parts-of-
speech.

� Natural language generation: Producing natural language sentences or texts from non-
linguistic representations.

� Machine translation: Translating sentences or texts in a source language to sentences or
texts in a target language.

In part-of-speech tagging we have natural language input, in generation we have natural lan-
guage output, and in translation we have both input and output in natural language.

If our aim is to build effective components for computational systems, then we must
developalgorithmsfor solving these problems. However, this is not always possible, simply
because the problems are not well-defined enough. The way out of this dilemma is the same
as in most other branches of science. Instead of attacking real world problems directly with
all their messy details, we build mathematical models of reality and solve abstract problems
within the models instead. Provided that the models are worth their salt, these solutions will
provide adequate approximations for the real problems.

Formally, an abstract problemQ is a binary relation on a setI of probleminstancesand
a setS of problemsolutions[14]. The abstract problems that are relevant to NLP are those
where eitherI or S (or both) are linguistic entities or representations of linguistic entities.
More precisely, an NLP problemP can be modeled by an abstract problemQ if the instance
setI is a subset of the set of permissible inputs toP and the solution setS is a subset of the
set of possible solutions toP .1

2.1 Application Methods

A method for solving an NLP problemP typically consists of two elements:

1. A mathematical modelM defining an abstract problemQ that can be used to modelP .

2. An algorithmA that effectively computesQ.

We will say thatM andA together constitutes anapplication methodfor problemP with
Q as themodel problem. For example, letG be a context-free grammar intended to model
the syntax of a natural languageL and letQ be the parsing problem forG. ThenG together
with, say, Earley’s algorithm is an application method for syntactic analysis ofL with Q as
the model problem. In general, the relation between real problems, abstract problems, models
and algorithms can be depicted as in Figure 1.2

For most application methods, the mathematical modelM can be defined independently
of the algorithmA. For example, a context-free grammar used in syntactic analysis is not de-
pendent on any particular parsing algorithm, and there are many different parsing algorithms
that can be used besides Earley’s algorithm. Moreover, one and the same model can be used
with different algorithms to compute different abstract problems, thus constituting applica-
tion methods for different NLP problems. A case in point is a bidirectional grammar, which
can be used with different algorithms to perform either parsing or generation (see, e.g., [1]).
Other examples will be discussed below.

1In fact, it is sufficient that there exist effectively computable mappings fromP inputs toI and fromS toP
solutions.

2Thanks to Mark Dougherty for designing this diagram.
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Figure 1: Real problems, abstract problems, models and algorithms

Example 1: Hidden Markov Models Let M(S;K;�; A;B) be a hidden Markov model
with state setS, output alphabetK and probability distributions� (initial state),A (state
transitions) andB (symbol emissions) (see, e.g., [23]). LetQ1 be the abstract problem of
determining the optimal state sequenceX1; X2; : : : XT for a given observation sequenceO of
lengthT , and letQ2 be the abstract problem of determining the probability of a given observa-
tion sequenceO. The problemQ1 can be computed in linear time using the Viterbi algorithm
[31]. The problemQ2 can be computed in linear time using one of several algorithms usually
called the forward procedure, the backward procedure, and the forward-backward procedure
[23].

If the states inS correspond to lexical categories, or parts-of-speech, and the symbols in
K corresponds to word forms in a natural languageL, the modelM together with the Viterbi
algorithm constitutes an application method for the part-of-speech tagging withQ1 as the
model problem. This is the standard method used in statistical part-of-speech tagging (see,
e.g., [12, 15]). At the same time, however, the modelM can be used together with the forward
procedure to solve the language modeling problem in an automatic speech recognition system
for L, with Q2 as the model problem [9].2

2.2 Acquisition Methods

So far, we have been concerned with methods for computing NLP problems, consisting of
mathematical models with appropriate algorithms. However, these are not the only meth-
ods that are relevant within the field of NLP. We will use the termacquisition methodto



refer to any procedure for constructing a mathematical model that can be used in an appli-
cation method. For example, any procedure for developing a context-free grammar modeling
a natural language or a hidden Markov model for part-of-speech tagging is an acquisition
method in this sense. Compared to application methods, these methods form a rather het-
erogeneous class, ranging from rigorous algorithmic methods to the more informal problem-
solving strategies typically employed by human beings.

In the following, we will concentrate almost exclusively on acquisition methods that make
use of machine learning techniques in order to induce models (or model parameters) from
empirical data, specificallycorpusdata. An empirical and algorithmic acquisition method
typically consists of two elements:

1. A parameterized mathematical modelM� such that providing values for the parameters
� will yield a mathematical modelM that can be used in an application method for some
NLP problemP .

2. An algorithmA that effectively computes values for the parameters� when given a sam-
ple of data fromP .

If the data sample must contain both inputs and (correct) outputs fromP , thenA is said to
be asupervisedlearning algorithm. If it is sufficient with a sample of inputs, we have an
unsupervisedlearning algorithm.

Example 2: Hidden Markov Models (cont’d) Let M�(S;K; ��; �A; �B) be a parameter-
ized hidden Markov model with state setS and output alphabetK, but where probability
distributions are unspecified. The acquisition problem in this case consists in finding suitable
values for the distribution parameters��, �A and�B.

The Baum-Welch algorithm [4], sometimes called the forward-backward algorithm, is
an unsupervised learning algorithm for solving this problem, given a sample of observation
sequences with symbols drawn fromK.

Thus, given a corpusC of texts in a natural languageL such that the set of words occurring
in C is (a subset of)K andS is a suitable tagset forL, thenM� together with the Baum-
Welch algorithm constitutes an acquisition method for HMM-based part-of-speech tagging
of L.2

2.3 Evaluation Methods

If acquisition and application methods were infallible, no other methods would be needed.
In practice, however, we know that there are many factors which may cause an NLP system
to perform less than optimally. For example, consider a situation where we first apply an
acquisition method(M�; A1) to some corpus dataC to construct a modelM , and then use an
application method(M;A2) to solve an NLP problemP with the model problemQ. Then the
following are some of the reasons why the performance on problemP may be suboptimal:

� The algorithmA1 may fail to produce the best model givenM� andC.

� The algorithmA2 may fail to compute the abstract problemQ.

� The abstract problemQ may be an inadequate model ofP .



In this paper, we will use the termevaluation methodto refer to any procedure for evaluating
NLP systems. However, the discussion will focus on extrinsic evaluation of systems in terms
of their accuracy. For example, letP be an NLP problem, and let(M1; A1) and(M2; A2) be
two different application methods forP . A common way of evaluating and comparing the
accuracy of these two methods is to apply them to a representative sample of inputs fromP
and measure the accuracy of the outputs produced by the respective methods. A special case
of this evaluation scheme is the case whereA1 = A2 and the modelsM1 andM2 are the
results of applying two different acquisition methods to the same parameterized modelM�

and training corpusC. In this case, it is primarily the acquisition methods that are evaluated.
Moreover, the fact that this kind of evaluation is often integrated as a feedback loop into
the actual acquisition method means that in practice the relationship between application
methods, acquisition methods and evaluation methods can be quite complex. Still, from an
analytical point of view, the three classes of methods are clearly distinguishable.

Example 3: Parsing Accuracy Let C be a corpus of parse trees for sentences in some
natural languageL, labeled with a set of category symbolsV , and letS be a deterministic
parsing system forL using the same set of category symbols. UsingC as an empirical gold
standard, we can evaluate the accuracy ofS by runningS on (the yields of trees in)C and
comparing, for every sentences in C, the parse treeS(s) produced byS with the (presumably
correct) parse treeC(s) in C. We say that a constituent of a parse treeS(s) is correct if the
same constituent (with the same label) is found inC(c). Two commonly used evaluation
metrics are the following (see, e.g., [22]):

� Labeled recall:

1

n

nX

i=1

# of correct constituents inS(si)
# of constituents inC(si)

� Labeled precision:

1

n

nX

i=1

# of correct constituents inS(si)
# of constituents inS(si)

When using these measures to compare the relative accuracy of several systems, we use
standard techniques for assessing the statistical significance of any detected differences.2

3 Statistical Models and Methods

Having discussed in some detail what we mean by models and methods in NLP, we may now
consider the question of what it means for a model or method to bestatistical. According
to [19], there are two broad classes of mathematical models: deterministic and stochastic. A
mathematical model is said to bedeterministicif it does not involve the concept of prob-
ability; otherwise it is said to bestochastic. Furthermore, a stochastic model is said to be
probabilisticor statistical, if its representation is from the theories of probability or statistics,
respectively.

Although Edmundson applies the termsstochastic, probabilistic andstatisticalonly to
models, it is obvious that they can be used aboutmethodsas well. First of all, we have defined



both application methods and acquisition methods in such a way that they crucially involve
a (possibly parameterized) model. If this model is stochastic, then it is reasonable to call the
whole method stochastic. Secondly, we shall see that also the algorithmic parts of application
and acquisition methods can contain stochastic elements. Finally, it seems uncontroversial to
apply the termstatisticalto evaluation methods that make use of descriptive and/or inferential
statistics.

In the taxonomy proposed by Edmundson, the most general concept is that of astochastic
model, with probabilistic and statistical models as special cases. Although this may be the
mathematically correct way of using these terms, it does not seem to reflect current usage in
the NLP community, where especially the termstatistical is used in a wider sense more or
less synonymous withstochasticin Edmundson’s sense. We will continue to follow current
usage in this respect.

Thus, for the purpose of this paper, we will say that a model or method isstatistical(or
stochastic) if it involves the concept of probability (or related notions such as entropy and
mutual information) or if it uses concepts of statistical theory (such as statistical estimation
and hypothesis testing).

4 Statistical Methods in NLP

In the remainder of this paper, we will discuss different ways in which statistical (or stochas-
tic) models and methods can be used in NLP, using concrete examples from the literature to
illustrate our points.

4.1 Application Methods

Most examples of statistical application methods in the literature are methods that make use
of a stochastic model, but where the algorithm applied to this model is entirely deterministic.
Typically, the abstract model problem computed by the algorithm is anoptimization problem
which consists in maximizing the probability of the output given the input. Here are some
examples:

� Language modeling for automatic speech recognition using smoothedn-grams to find the
most probable string of wordsw1; : : : ; wn out of a set of candidate strings compatible
with the acoustic data [21, 2].

� Part-of-speech tagging using hidden Markov models to find the most probable tag se-
quencet1; : : : tn given a word sequencew1; : : : wn [12, 15, 24].

� Syntactic parsing using probabilistic grammars to find the most probable parse treeT
given a word sequencew1; : : : ; wn (or tag sequencet1; : : : ; tn) [5, 30, 11].

� Word sense disambiguation using Bayesian classifiers to find the most probable senses
for wordw in contextC [20, 32].

� Machine translation using probabilistic models to find the most probable target language
sentencet for a given source language sentences [8, 10].



Many of the application methods listed above involve models that can be seen as instances of
Shannon’snoisy channel model[29], which represents a Bayesian modeling approach. The
essential components of this model are the following:

� The problem is to predict a hidden variableH from an observed variableO, whereO can
be seen as the result of transmittingH over a noisy channel.

� The solution is to find that valueh of H which maximizes the conditional probability
P (h jo), for the observed valueo of O.

� The conditional probabilityP (h j o) is often difficult to estimate directly, because this
requires control over the variableo whose value is probabilistically dependent on the
noisy channel.

� Therefore, instead of maximizingP (h jo), we maximize the productP (h)P (o jh), where
the factors can be estimated independently, given representative samples ofH and(H;O),
respectively.

Within the field of NLP, the noisy channel model was first applied with great success to the
problem of speech recognition [21, 2]. As pointed out by [13], this inspired NLP researchers
to apply the same basic model to a wide range of other NLP problems, where the original
channel metaphor can sometimes be extremely far-fetched.

It should be noted that there is no conflict in principle between the use of stochastic
models and the notion of linguisticrules. For example, probabilistic parsing often makes use
of exactly the same kind of rules as traditional grammar-based parsing and produces exactly
the same kind of parse trees. Thus, a stochastic context-free grammar is an ordinary context-
free grammar, where each production rule is associated with a probability (in such a way that
probabilities sum to 1 for all rules with the same left-hand side); cf. also [5, 30, 11].

All of the examples discussed so far involve a stochastic model in combination with a de-
terministic algorithm. However, there are also application methods where not only the model
but also the algorithm is stochastic in nature. A good example is the use of a Monte Carlo
algorithm for parsing with the DOP model [6]. This is motivated by the fact that the abstract
model problem, in this case the parsing problem for the DOP model, is intractable in principle
and can only be solved efficiently by approximation.

4.2 Acquisition Methods

Statistical acquisition methods are methods that rely onstatistical inferenceto induce models
(or model parameters) from empirical data, in particular corpus data, using either supervised
or unsupervised learning algorithms (cf. section 2.2). The model induced may or may not be
a stochastic model, which means that there are as many variations in this area as there are
different NLP models. We will therefore limit ourselves to a few representative examples and
observations, starting with acquisition methods for stochastic models.

Supervised learning of stochastic models is often based on maximum-likelihood estima-
tion (MLE) using relative frequencies. Given a parameterized modelM� with parameter�
and a sample of dataC, a maximum likelihood estimation of� is an estimate that maximizes
the likelihood functionis P (C j�). For example, if we want to estimate the category prob-
abilities of a discrete variableX with a finite number of possible valuesx1; : : : ; xn given a



sampleC, then the MLE is obtained by lettinĝP (xi) = fC(xi)(1 � i � n), wherefC(xi) is
the relative frequency ofxi in C.

In actual practice, pure MLE is seldom satsifactory because of the so-called sparse data
problem, which makes it necessary tosmoothethe probability distributions obtained by MLE.
For example, hidden Markov models for part-of-speech tagging are often based on smoothed
relative frequency estimates derived from a tagged corpus (see, e.g., [24, 25]; cf. also section
2.2 above).

Unsupervised learning of stochastic models requires a method for estimating model pa-
rameters from unanalyzed data, such as the Expectation-Maximization algorithm [18]. Let
M� be a parameterized model with parameter�, letH be the hidden (analysis) variable, and
let C be a data sample from the observable variableO. Then, as observed in [23], the EM
algorithm can be seen as an iterative solution to the following circular statements:

� Estimate: If we knew the value of�, then we could compute the expected distribution of
H in C.

� Maximize: If we knew the distribution ofH in C, then we could compute the MLE of�.

The circularity is broken by starting with a guess for� and iterating back and forth between
anexpectation stepand amaximization stepuntil the process converges, which means that a
local maximum for the likelihood function has been found. This general idea is instantiated
in a number of different algorithms that provide acquisition methods for different stochastic
models. Here are some examples, taken from [23]:

� The Baum-Welch or forward-backward algorithm for hidden Markov models [4].

� The inside-outside algorithm for inducing stochastic context-free grammars [3].

� The unsupervised word sense disambiguation algorithm of [28].

It is important to note that, although statistical acquisition methods may be more promininent
in relation to stochastic models, they can in principle be used to induce any kind of model
from empirical data, given suitable constraints on the model itself. In particular, statistical
methods can be used to induce models involving linguistic rules of various kinds, such as
rewrite rules for part-of-speech tagging [7] or constraint grammar rules [27].

Finally, we note that the use of stochastic or randomized algorithms can be found in
acquisition methods as well as application methods. Thus, in [26] a Monte-Carlo algorithm is
used to improve the efficiency of transformation-based learning [7] when applied to dialogue
act tagging.

4.3 Evaluation Methods

As noted earlier, evaluation of NLP systems can have different purposes and consider many
different dimensions of a system. Consequently, there are a wide variety of methods that
can be used for evaluation. Many of these methods involve empirical experiments or quasi-
experiments in which the system is applied to a representative sample of data in order to
provide quantitative measures of aspects such as efficiency, accuracy and robustness. These
evaluation methods can make use of statistics in at least three different ways:

� Descriptive statistics



� Estimation

� Hypothesis testing

Before exemplifying the use of descriptive statistics, estimation and hypothesis testing in
natural language processing, it is worth pointing out that these methods can be applied to any
kind of NLP system, regardless of whether the system itself makes use of statistical methods.
It is also worth remembering that evaluation methods are used not only to evaluate complete
systems but also to provide iterative feedback during acquisition (cf. section 2.3).

Descriptive statistics is often used to provide the quantitative measurements of a particular
quality such as accuracy or robustness, as exemplified in the following list:

� Word error rate, usually defined as the number of deletions, insertions and substitutions
divided by the number of words in the test sample, is the standard measure of accuracy
for automatic speech recognition systems (see, e.g., [22]).

� Accuracy rate (or percent correct), defined as the number of correct cases divided by the
total number of cases, is commonly used as a measure of accuracy for part-of-speech
tagging and word sense disambiguation (see, e.g., [22]).

� Recall and precision, often defined as the number of true positives divided by, respec-
tively, the sum of true positives and false negatives (recall) and the sum of true positives
and false positives (precision), are used as measures of accuracy for a wide range of appli-
cations including part-of-speech tagging, syntactic parsing and information retrieval (see,
e.g, [22]).

Statistical estimation becomes relevant when we want to generalize the experimental results
obtained for a particular test sample. For example, suppose that a particular systems obtains
accuracy rater when applied to a particular test corpus. How much confidence should we
place onr as an estimate of the true accuracy rate� of systems? According to statistical
theory, the answer depends on a number of factors such as the amount of variation and the
size of the test sample. The standard method for dealing with this problem is to compute a
confidence intervali, which allows us to say that the real accuracy rate� lies in the interval
[r � i=2; r + i=2] with probabilityp. Commonly used values ofp are 0.95 and 0.99.

Statistical hypothesis testing is crucial when we want to compare the experimental results
of different systems applied to the same test sample. For example, suppose that two systemss1
ands2 obtain an error rate ofr1 andr2 when measured with respect to a particular test corpus,
and suppose furthermore thatr1 < r2. Can we draw the conclusion thats1 has higher accuracy
thans2 in general? Again, statistical theory tells us that the answer depends on a number of
factors including the size of the differencer2 � r1, the amount of variation, and the size of
the test sample. And again, there are standard tests available for testing whether a difference
is statistically significant, i.e. whether the probabilityp that there is no difference between�1
and�2 is smaller than a particular threshold�. Standard tests of statistical significance for
this kind of situation include the pairedt-test, Wilcoxon’s signed ranks test, and McNemar’s
test. Commonly used values of� are 0.05 and 0.01.

5 Conclusion

In this paper, we have discussed three different kinds of methods that are relevant in natural
language processing:



� An application methodis used to solve an NLP problemP , usually by applying an algo-
rithmA to a mathematical modelM in order to solve an abstract problemQ approximat-
ing P .

� An acquisition methodfor an NLP problemP is used to construct a modelM that can be
used in an application method forP . Of special interest here are empirical and algorithmic
acquisition methods that allow us to constructM from a parameterized modelM� by
applying an algorithmA to a representative sample ofP .

� An evaluation methodfor an NLP problemP is used to evaluate application methods for
P . Of special interest here are experimental (or empirical) evaluation methods that allow
us to evaluate application methods by applying them to a representative sample ofP .

We have argued that statistics, in the wide sense including both stochastic models and sta-
tistical theory, can play a role in all three kinds of methods and we have supplied numerous
examples to substantiate this claim. We have also tried to show that there are many ways in
which statistical methods can be combined with traditional linguistic rules and representa-
tion, both in application methods and in acquisition methods. In conclusion, we believe that
methodological discussions in NLP can benefit from a more articulated conceptual frame-
work and we hope that the ideas presented in this paper can make some contribution to such
a framework.
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