
0

The SystemX Natural Language Interface:
Design, Implementation and Evaluation

Nick Cercone, Paul McFetridge, Fred Popowich,

Dan Fass, Chris Groeneboer, Gary Hall

CSS-IS TR 93-03

Centre for Systems Science

Simon Fraser University

Burnaby, British Columbia

CANADA V5A 1S6

November 1993

(revised January 1994)

 Abstract

SystemX is a natural language interface (NLI) to relational databases. The
system has been used with a customer service statistical database, a
research grants database, and an environmental database. Distinctive fea-
tures of the NLI are its use of Head-Driven Phrase Structure Grammar
(HPSG), treatment of complex noun phrases, integration of natural lan-
guage with other input modes, use with a statistical database, and field-test-
ing and evaluation in a real world application.

Copyright  Simon Fraser University (all rights reserved)

1

1.0 Introduction

Natural language interfaces (NLIs) allow people to communicate with machines in a
natural language such as English. One application of NLIs is as “front-ends” to databases,
enabling non-technical people to directly access information stored in databases. Advan-
tages of NLIs as front-ends include relieving users of the need to know the structure of the
database ([20]); relieving users of the need to know a database manipulation language,
allowing users to express queries directly without a transformation or mapping to some
other representation ([5], [32]); and making the system more convenient and flexible for
users ([20]).

SystemX is an NLI to relational databases. Questions containing ordinary English are
translated into database queries expressed in SQL (short for Structured Query Language),
the standard computer language for manipulating relational databases. SystemX is differ-
ent from other NLIs for the following reasons.

• Statistical and non-statistical databases are used.
SystemX's main target is a statistical database called RCIOPS owned by Rogers

Cablesystems, a major Canadian cablevision company. The database describes, among
other things, Rogers’ customer service operations, and underlies the company’s executive
information system (EIS). Statistical databases and EISs are common in larger companies
because executives are typically interested in summary information. The Rogers EIS pro-
vides on-line access to pre-formatted reports which are built using statistics derived from
summarizing the company’s operational data.

SystemX has also been used as a front end to a statistical research grants database
from NSERC (the National Science and Engineering Research Council of Canada) and a
non-statistical environmental database from Environment Canada.

• Head-Driven Phrase Structure Grammar (HPSG) and a special-purpose semantics is
used.
The parser of SystemX — its natural language understanding component — uses the

HPSG formalism [23] to build semantic representations using a notation that is closely
tied to the structure of relational databases. The semantic representations are then trans-
lated into a formalism-neutral logical form and then into SQL.

• Natural language is integrated with other input methods.
 Input to SystemX is via a menu which allows queries as (a) natural language sen-

tences, (b) menu items, or (c) a combination of menu items and fragments of natural lan-
guage.

• Development is for an industrial application using real-world field-testing and evalua-
tion.
SystemX is being developed to provide freer, less restricted access to Rogers’ RCIOPS

database than the access provided by their current EIS, particularly the customer service
parts of the database. SystemX is the result of extensive consultation with several potential
users within Rogers. Through extensive interviews with the Vice-President of Customer
Service for Rogers’ Western division, we have learned a significant portion of the sublan-
guage used by the cablevision industry to describe its customer service operations. We dis-
covered that complex compound nouns were used extensively in the sublanguage and have

2

developed a sophisticated treatment of them using HPSG and the NLI's semantics. Further
extensions to SystemX, also influenced by the interaction with Rogers, are currently being
programmed. The improvements include a better user interface and a distributed client/
server architecture.

The remainder of the paper is organized as follows. Certain key design issues behind
our NLI are presented in section 2. Aspects of the developed system are described in sec-
tions 3-5. Section 3 describes SystemX's architecture. Section 4 shows an extended exam-
ple of use of the system. Section 5 outlines our field test and its results. Section 6 reiterates
the main features of systemX, discusses its merits, and offers some concluding remarks.

2.0 Design Issues

The team developing SystemX is committed to a view of design as an evolutionary
process. This view has been articulated by Dasgupta [8] in the following way (see
Figure 1). Design begins with a problem specified as a set of requirements which are often
imprecise, incomplete, or both. Critical tests are devised to decide whether the design fits
the requirements. Identification of a misfit between design and requirements may indicate
the need for modifications to the design or requirements. Another critical test is devised to
decide whether the (possibly new) design fits the (possibly modified) requirements. The
process is repeated until a fit is found between requirements and design. However, require-
ments may change or a misfit may surface at any time in the future. In this sense design is
an evolutionary process and evaluation, viewed as critical testing and misfit identification,
is an inextricable part of the process.

This section describes various design concerns behind the evolution of SystemX.
Section 2.1outlines a number of prior theoretical concerns; Section 2.2describes influential
properties of the main application of SystemX to the Rogers RCIOPS statistical database.
The discussion of evaluation issues will be deferred to Section 5.

Critical Test

Requirements

Design

Misfit Identification

Misfit Elimination

FIGURE 1. The design process.

3

2.1 Theoretical Concerns

2.1.1 Positive Aspects of the First System X
The current SystemX is the second natural language interface to a relational database

developed at Simon Fraser University. The first NLI — also called System X ([6], [18],
[19]) but spelt as two words System and X — had quite extensive coverage of English and
could handle passives, imperatives, possessives, relative clauses, prepositional phrases and
quantification. The old version of System X contained many positive design issues and
features which have been incorporated into the new SystemX. These issues and features
are: the provision of ad hoc access and portability, and a proven system architecture.

 Ad hoc access. Natural language allows users to formulate queries using a form of
communication very familiar to them with a freedom unmatched by other input modes
such as menus. See [4], [5], [33] for discussion of the merits of natural language as an
interface mode.

 Portability. NLIs can be made more portable in a number of ways (see [7],[12],
[13],[21]). The most important way is promoting easy attachment of databases from dif-
ferent domains. The original System X focussed on portability between databases and
attempted to minimize the knowledge that humans must provide by maximizing the
knowledge that the system can discover for itself by analyzing the database (see [6]). The
same view is adopted in the new SystemX.

 Proven system architecture. System X was of a modular design, containing a natural
language understanding module and a database query module. The natural language
understanding module had three components: a lexical analyzer (which analyzed words), a
parser (which did syntax processing), and a semantic interpreter (which did semantic
interpretation and produced canonical semantic representations). The database query mod-
ule contained a component that translated the canonical semantic representations into a
logical form (LF). A second component translated the logical form into SQL. Different
versions of this component would translate the logical form into other database languages.
The same basic architecture is used in the new SystemX.

2.1.2 Use of Head-Driven Phrase Structure Grammar and New Semantics
One major difference between the old and new versions of SystemX is that the natural

language understanding module has been updated with a more modern grammar formal-
ism and a new semantics. Head-Driven Phrase Structure Grammar (HPSG), the new gram-
mar formalism, is one of the best known “unification-based” grammar formalisms.
Unification-based grammars are grammars whose central operation is unification, a pow-
erful matching technique. Two descriptions unify if they do not contain conflicting infor-
mation and the result of unification is a description containing all the information from
both descriptions.

Although HPSG borrows freely many positive features from other previous unifica-
tion-based grammars, it has a number of distinctive features. For one, a uniform knowl-
edge representation — attribute-value matrices — are used to represent lexical entries and
grammar rules and principles. For another, the grammar is head-driven, i.e., the head con-
stituent of a phrase is central. There is evidence that head-driven parsing strategies are
more efficient than other parsing strategies [2].

A semantic representation which makes use of feature structures to describe database

4

relations [16] is incorporated directly into the HPSG feature structures used by the parser.
So syntactic and semantic processing can be done in parallel. The HPSG semantic repre-
sentations are then converted into logical forms which are then passed to an adapted ver-
sion of the database query module from the old System X.

2.2 Properties of the Application
The application chosen for SystemX was to provide ad hoc access to the RCIOPS data-

base underlying the Rogers Cablesystems’ EIS, particularly, its customer service informa-
tion. The EIS provides on-line access to pre-formatted reports built from statistics derived
from summarizing the company’s operational data. SystemX provides on-line, direct
access to the statistical database on which the preformatted reports are based. This applica-
tion has been a big influence on the design of SystemX in three main ways: its task domain
(Section 2.2.1), database domain (Section 2.2.2), and linguistic domain (Section 2.2.3).

2.2.1 The Task Domain
Knowledge about the task domain was obtained through interviews with Rogers’ Vice-

President of Customer Service for its Western Region, and other company personnel. The
VP was selected as target user for the system. In these interviews, we learned about the
company’s business operations, and its use of databases and information retrieval. Pres-
ently, graphs containing key monthly statistics must be requested from Rogers' database
people in Toronto. It often took three weeks for the requested information to come back
graphed. By then, our user would sometimes have forgotten why he had asked for the
information! With SystemX, not only can its users obtain the information they want in
minutes, they can follow up on some interesting-looking trend or anomaly there and then,
without having to wait another three weeks for feedback!

Some of the graphs the VP requested from Toronto never vary, so we opted to provide
these as “canned” menu items. In these interviews, we were told about the kinds of queries
the VP would like to formulate, notably, what kinds of statistics he sought and the forms of
location and time restrictions he needed. Through the interviews, we came to see that Sys-
temX should provide not only natural language on its own, but also natural language inte-
grated with menus so that our VP could build certain requests through a combination of
menu selection and typed natural language.

2.2.2 The Database Domain
The Rogers RCIOPS database is a statistical database, that is, each table in the data-

base contains one or more category attributes (columns) whose values define sets of enti-
ties of a single type, and one or more statistical attributes (columns) whose values
summarize those sets. Some of these statistical attributes are grouped together as statisti-
cal tables.

There are six subdomains within the customer service domain. Ordered in terms of
complexity from simplest to most complex, they are: manpower, plant, subscribers, out-
ages, service calls and telephone. Figure 1 shows these six subdomains and, in the case of

5

the service calls and telephone subdomains, further major subareas within them.

Two category attributes appear in every statistical table in the RCIOPS database:
S_Date and Location. The S_Date attribute refers to time information. The
Location attribute refers to codes that represent all of Canada, two regions (Western
and Eastern), and individual divisions (such as Vancouver, part of the Western Region).
The subscribers, outages, service calls and telephone subdomains all have their own sub-
domain-specific category attributes, which we shall come to shortly.

Plant. The simplest subdomain is plant which consists of one statistical table, ACM-
PLANT, containing one statistical attribute, Size_Kms, and no subdomain-specific cat-
egory attribute.

Manpower. The next simplest is manpower which also consists of one statistical table,
ACMMAN, again containing just one statistical attribute, Man_Count . However, there
is a subdomain-specific category attribute, Man_Code, which refers to two types of
employee.

Subscribers. The subscribers subdomain, the next most complicated, has one statisti-
cal table (ACMSUBS) containing two statistical attributes and one subdomain-specific cat-
egory attribute. The two statistical attributes are Subs_Bud , which refers to the number
of cable subscribers budgeted for a time-frame, and Subs , the number of subscribers
served during that time-frame. The subdomain-specific category attribute, Subs_Code,
divides subscribers into basic and terminal categories.

Outages. The outages subdomain has one statistical table (ACMREL), three statistical
attributes and one subdomain-specific category attribute. The three statistical attributes are
Outages (number of outages), Outage_Mins (number of minutes of outage), and
Fails_Corrected (percentage of failures corrected within four hours). The subdo-
main-specific category attribute, Outage_Code, divides outages into scheduled and
unscheduled ones.

Service calls. The above four subdomains only have one statistical table each. The
remaining subdomains, service calls and telephone, each have multiple statistical tables.
The service calls subdomain contains three statistical tables, each containing two statisti-

Trouble Calls

Basic Service

Calls
Terminal Calls

Subscribers

Outages

Telephone

Calls

Received

Calls

Answered

Customer Service

Representatives

Service Calls

Maintenance Calls

Plant

Manpower
Customer Service

Phone Lines

Retail Calls

FIGURE 2. The RCIOPS cablevision customer service domain.

6

cal attributes. There are also two subdomain-specific category attributes. The three tables
are ACMSERVC, ACMSERVCGRP and ACMSERVCTOT which offer views of the service
call subdomain at three levels of granularity. The finest level of granularity is 26 individual
types of service call (ACMSERVC). The intermediate level is five groupings of service calls
(ACMSERVCGRP) shown in Figure 1: basic service calls, maintenance calls, trouble calls,
terminal calls, and retail calls. The coarsest level is all service calls collectively (ACM-
SERVCTOT).

The subdomain-specific category attribute for ACMSERVC is Servcall_Code ,
which contains codes for the 26 types of service calls such as subscriber (sub) owned
equipment (eqp) faults and drop problems outside. Correspondingly, ACMSERVCGRP has
the category attribute Servcgp_Code , which contains codes for the five groupings of
service call, such as basic service calls and maintenance calls. ACMSERVCTOT has no
subdomain-specific category attribute.

The statistical attributes for the three tables all refer to the same kinds of statistics,
either the number of service calls or a ratio of the number of service calls per 1000 basic
service subscribers. For ACMSERVC, the statistical attributes are called
Servcall_Count and Servcall_Ratio . For ACMSERVCGRP, they are called
Servc_Grp_Count and Servc_Grp_Ratio. For ACMSERVCTOT, they are called
Tot_Servc_Count and Tot_Servc_Ratio.

As will be seen in the next section (Section 2.2.3), the sublanguage used to describe
the three levels of granularity, the codes and the counts and ratios, causes a number of lin-
guistic problems.

Telephone. The telephone subdomain has the most statistical tables and statistical
attributes: four tables containing two, four, four, and six statistical attributes. These tables
cover the four subareas shown in Figure 1: phone lines, customer service representatives,
phone calls received and phone calls answered. There is one subdomain-specific category
attribute, shared by all four tables, called Office_Code , which refers to two types of
telephone office, business and repair.

The table ACMTELSLINE contains statistics about telephone lines into a particular
office within two attributes, Fone_Lines (number of phone lines) and Trunk_Busy
(number of hours trunk lines were busy).

ACMTELSCSR holds statistics about the customer service representatives (also known
as CSRs) who answer the phones. The information is held within the four attributes
Csr_Stats (number of representatives), Csr_Hours (number of hours representatives
answered phones), Csr_Hours_Pr (number of hours paid/required), and No_Ft_Eqv
(number of full-time equivalent representatives).

ACMTELSREC contains statistical information about phone calls received at a particu-
lar office. The four statistical attributes for the table are Calls_Rec (number of calls
received), Calls_Rec_Bud (number of calls budgeted to be received), Vru_Abnd
(number of calls abandoned while interacting with a voice response unit), and
On_Hold_Abnd (number of calls abandoned while waiting to speak to someone).

Finally, the table ACMTELSANS has statistics about phone calls answered (at a partic-
ular office), held with the six attributes Calls_Ans (number of phone calls answered),
Avg_Talk (average number of seconds called talked), Avg_Wait (average number of
seconds called waited), Avg_Work (average number of seconds representatives worked
after a call), Pct_20_Sec (percentage of phone calls answered within a 20 second stan-

7

dard), and Pct_180_Sec (ditto but for 180 seconds).
The sublanguage used in the telephone subdomain, like the service call subdomain,

produced a host of linguistic problems, described in the next section.

2.2.3 The Natural Language Domain

During the interviews conducted with users about the task domain, they were asked how
they would frame queries in natural language, if that facility were available. From their
answers a basic corpus of 90 sentences was built. The corpus, which appears in Appendix
A, shows a sublanguage for the cablevision customer service subdomain, and other subdo-
mains such as accounts receivable.

Much of the sublanguage consisted of compound noun phrases that were technical and
terse but lengthy nonetheless, often containing acronyms and abbreviations. For example,
compound noun phrases included the western region outage log summary, the co owned
eqp fault breakdown ratios, and the TSR calls answered within 20 seconds. Acronyms
included TSR (short for technical service representative) and VRU (for voice response
unit). The many abbreviations included sub (for subscriber), co (for company), and eqp
(for equipment).

Much work went into figuring out the meanings of words and phrases. Some of this
was done in consultation with our interviewees. However, because checking every detail
of the cablevision sublanguage would have been too time-consuming for our interviewees,
we mapped out natural language phrases for referring to some of the available statistics,
especially in the service call and telephone subdomains. We found that a number of words
had multiple senses, for example, the word calls had different meanings in the service call
and telephone subdomains, and the word count had different meanings in all six subdo-
mains.

It rapidly became apparent that the main problem was to analyze the compound noun
phrases while keeping down the sense ambiguity of words and hence the number of lexical
entries in SystemX’s lexicon. The analysis of compound nouns and sense ambiguity was
complicated because interpretation was not always a matter of straightforward decomposi-
tional meaning. These problems are not just a property of the structure of the RCIOPS
database, they are related to the general linguistic problems of compositionality and of
ambiguity. In a strict compositional approach to natural language semantics, the meaning
of a complex constituent would be composed of the meanings of the parts. Such an
approach is far from adequate for our needs, and far from adequate for natural language in
general. Let us now look at some specific classes or problematic constructions that were
encountered in our corpus. In the following examples, bold-italic indicates the word that
changes the meaning of the phrase.

Problem 1 (Non-compositionality): An extra word changes the statistical attribute(s) or
statistical table.

This is a non-standard form of composition since the meaning of two words is formed
by one meaning overwriting that of the other, rather than their meanings combining. An
extra word can change the meaning of a phrase in one of two ways: (a) the addition of a
new word can override the prior meaning of a phrase and (b) a word can have a meaning
that must be suppressed in the presence of a prior word. This happens quite frequently in
the telephone subdomain where tables often contain statistical attributes that have similar

8

English descriptions:

TSR hours (ACMTELSCSR Csr_Hours)
TSR hours projected (ACMTELSCSR Csr_Hours_Proj)

calls answered (ACMTELSANS Calls_Ans)
calls answered within 20 seconds

(ACMTELSANS Pct_20_Sec)
calls answered within 180 seconds

(ACMTELSANS Pct_180_Sec)

calls received (ACMTELSREC Calls_Rec)
calls received (against) budget

(ACMTELSREC Calls_Rec_Bud)

A different but related problem happens in the outage and subscriber subdomains
because the words outage and subscriber refer both to the name of the subdomain and to
certain statistical attributes within the subdomain. The problem is to figure out which use
is which and control the meanings of words so that the correct interpretation is produced
each time. Listed below are the interpretations we assigned to various phrases from the
outages subdomain (the subscribers subdomain has very similar phrases):

outages = outages count (ACMSREL Outages)
outages corrected = corrected outages (ACMSREL Fails_Corrected)
outages scheduled = scheduled outages (ACMSREL Outage_Code 10)
outages statistics (ACMSREL 3 statistical attributes)
Yet another related problem can be found in the service call subdomain. The presence

of basic suppresses the meaning of service call: and changes the statistical table.
service call ... (ACMSERVCTOT)
 basic service call ... (ACMSERVCGRP Servc_Grp_Code 10)

Problem 2 (Ambiguity, Non-compositionality): One word or phrase refers to two (or
more) statistical tables, and an extra word or phrase selects the meaning.

This is common in both multiple-table subdomains, service calls and telephone. In the
service call subdomain, a number of lexical items refer to two tables of different levels of
granularity: ACMSERVCTOT (coarse-grained: all service calls collectively), ACM-
SERVCGRP (medium-grained: five intermediate groupings of service calls) and ACM-
SERVC (fine-grained: 26 categories).We interpret the phrase service call, in the absence of
any other words, to refer to the medium-grained ACMSERVCGRP table or the fine-grained
ACMSERVCTOT. Likewise, phrases like basic service call, maintenance call, and retail
call, in isolation, can refer to either one of the five medium-grain groupings of service calls
(ACMSERVCGRP) or the individual types of service call falling within that group (ACM-
SERVC).

In the telephone subdomain, we interpret tsr, when paired with performance (and other
such general words), as referring to all statistical attributes that concern customer service
representatives. These attributes are drawn from three different tables.

The ambiguity of granularity of phrases in these subdomains is resolved through the
presence (or absence) of certain words, often the last in a phrase. We interpret the attach-
ment of the word breakdown(s) to a phrase to select the finer-grained of the two tables

9

referred to by the phrase. So, for example, trouble call breakdown is interpreted as refer-
ring to the ACMSERVC table, rather then the coarser-grained ACMSERVCGRP.

Conversely, the words total(s), or summary, or the absence of any word, is taken to
indicate the coarser-grained of two tables. Here is a summary of what has just been said:

service call total(s) coarse ACMSERVCTOT
service call breakdown(s) medium ACMSERVCGRP
trouble call total(s) medium ACMSERVCGRP
trouble call breakdown(s) fine ACMSERVC
drop problem outside breakdown(s)/total(s) fine ACMSERVC

Likewise, the presence of performance in tsr performance indicates a reference to
three tables whereas the presence of hours in tsr hours indicates a reference to a statistical
attribute (Csr_Hours) from just one table (ACMTELSANS).

Problem 3 (Ambiguity): One word refers to a variety of category attribute information.

The phrases of the service call subdomain mentioned above refer not only to two dif-
ferent tables, but to two different category attributes for codes within those tables. The
code values, however, are always the same, e.g., maintenance call refers to the table ACM-
SERVCGRP and its Servc_Grp_Code value, which is 20 , and also ACMSERVC and its
Acmserve_Code value, which is also 20 .

A different kind of example is the word sub (actually, an abbreviation) which occurs in
two subdomains, subscribers and service calls. In the subscriber subdomain, it has one
basic meaning. However, in the service call subdomain, it has at least three distinct mean-
ings in sub owned, sub education and sub not home, referring to three different values of
the category attribute Servcall_Code :

sub owned eqp faults (ACMSERVC Servcall_Code 1)
sub education (ACMSERVC Servcall_Code 4)
sub not home (ACMSERVC Servcall_Code 7)
A further example, which occurs with the category attribute S_Date , is the word last,

which has five different temporal meanings in the following phrases:
for last year = for the year prior to the current one.
for the last N years = all of the last -12xN months.
for (last) July = the s_date information from July = the July in the last 12 months.
for last month = the month prior to today.
for the last N months = all of the last -1xN months.

 Problem 4 (Ambiguity): Flexible adjunct attachment needed.

Some of the compound nouns we encountered were as long as twelve words, e.g., the
may 1992 eastern divisions sub owned eqp fault count total stats. It became clear that we
needed to assign some internal structure to the compounds in order to do further analysis.
Furthermore, we needed a flexible approach to adjunct attachment that would allow the
same adjunct as both premodifier and postmodifier. This was especially apparent with
words that represent the category attributes S_Date and Location , e.g., the Calgary
outages, the outages for Calgary, the 1992 outages and the outages in 1992. A flexible
approach was also needed to handle the many alternative ways of requesting the same sta-

10

tistical attributes(s) in natural language. This can be seen below in the many synonymous
expressions using the phrase trouble calls:

trouble calls = trouble call total(s) = trouble call activity total(s) = total(s) of trouble
calls

(ACMSERVCGRP Servc_Grp_Count Servc_Grp_Ratio)
trouble call counts = trouble call count total(s)
(ACMSERVCGRP Servc_Grp_Count)
trouble call ratios = trouble call ratio total(s)
(ACMSERVCGRP Servc_Grp_Ratio)
trouble call activity breakdown(s) = breakdown(s) of trouble calls = breakdown(s) of

trouble call activity
(ACMSERVC Servcall_Count Servcall_Ratio)
trouble call count breakdown(s) = breakdown(s) of trouble call counts
(ACMSERVC Servcall_Count)
trouble call ratio breakdown(s) = breakdown(s) of trouble call ratios
(ACMSERVC Servcall_Ratio)

Problem 5 (Non-compositionality): Percolation of adjunct information through com-
pound noun phrases required.

In all the cases outlined above, it became apparent that we needed special techniques
to percolate code values through lengthy compound noun phrases. Category attribute
information — S_Date, Location and any other codes — must be passed through a
complex nominal. Hence in the Calgary outages and the outages in Calgary, the S_Date
code value (2800) must be passed through the phrase.

Likewise, in situations where an extra word changes the statistical attribute(s), such as
TSR hours (Csr_Hours) and TSR hours projected (Csr_Hours_Proj), care must
be taken that the information Office_Code 20 contributed by TSR is not lost.

2.3 Our Approach
Given our theoretical concerns, and the practical concerns with the data, domain and

tasks, we sought a solution based on the early version of System X. Within the HPSG for-
malism, we developed solutions to the syntactic and semantic problems which could then
be incorporated into the whole natural language system. Although we used HPSG and a
specific statistical database in designing the natural language interface, many of our tech-
niques are applicable to other databases and other formalisms as we will see in our discus-
sions in subsequent sections.

3.0 Implementation

SystemX is implemented on a Sun SPARC Station running SunOS, OpenWindows,
Sicstus Prolog and Common Lisp. Figure 3 gives a high level graphic view of SystemX,
which consists of a series of modules: HPSG-PL, Lisp Parser, TreeTool, LF conversion,
semi-automatic construction of application-dependent knowledge bases, Oracle, and Gnu-
plot. The system’s interface, described in Section 3.1, allows the user to input queries via a
combination of natural language and menu selection. The interface accepts queries from

11

the user (on the right side of the figure) specified wholly or partly in English, translates
them into SQL (via an intermediate language called LF), retrieves data from the database,
and displays the data in the format (table or graphed trend) specified by the user in the
query. The reports are obtained by typing a full query in natural language, including the
statistic sought for a number of number of business units (or divisions) over a specified
time period. Graphs are currently obtained by consulting a menu where natural language
can be used to determine the base statistic.

The interface is customized to a given application via the creation of a Lexicon of
English expressions related to the domain, used by the parser, and via the creation of an
Application Dependent Knowledge Base (ADKB) containing information about the target
(Oracle) database. The ADKB is constructed semi-automatically, with information
extracted from the data dictionary of the database as well as information supplied by indi-
viduals familiar with the domain.

Natural language queries are processed by the parser, described in Section 3.2, which
translates the query into a semantic representation. Section 3.3 describes the translation of
semantic representations into logical form (LF), and Section 3.4 explains the translation
of LF into SQL. Section 3.5 describes the system’s output as tables and graphs.

3.1 The Interface
The main components of the interface are a main menu and a trend menu. Figure 4

shows the main menu. “New Query” is selected when natural language query input and
tabular presentation of data is desired. “Display SQL” displays the SQL code generated by
the most recent “New Query.” “Save Last Response” saves the most recent table of data,
and “Print Saved Responses” prints saved tables of data. “Display a Trend” brings up the
trend menu and presents data in line-graph form. “Print Last Trend” prints the most recent
trend. “Make a Comment” opens the on-line commenting facility. “Stop” is used to exit
SystemX.

Lexicon

Oracle

Dic
tion
ary

DB

ParserFormatted Data

SQL

Unformatted Data

SQL
Tabular Reports

Read

DD

SX Oracle Interface

SX Oracle Interface

Graph Trends

Display Tables

LF

Application Dependent KB

Query via English

User

Developer

Developer

Trend Graphs
LF

and Menus

FIGURE 3. Overview of SystemX.

12

Figure 1 shows the trend menu which is selected through “Display a Trend” in the
main menu. Users can elect to specify a statistic for graphing in natural language (menu

item 9: “Specify an Ad Hoc Trend”) or choose among a set of canned queries (items 1-8 in
the trend menu).

3.2 Natural Language to Semantic Representation
Natural language is translated into a semantic representation by a parser. To do this

translation, the parser needs a description of the grammar for input queries, complete with
a lexicon or dictionary which contains the words allowed in the input. The semantic repre-
sentation is then converted to a logical form, and finally to SQL (see Section 3.3 and
Section 3.4). The behaviour of the parser is summarized in Figure 6.

Two parsers have been developed, one written in Lisp by Paul McFetridge ([16]), and
the other written in Prolog by Fred Popowich, Carl Vogel, and Sandi Kodric ([15], [27]).
The two parsers are used to test competing ideas, which are sometimes easier to imple-
ment and test in one language than the other. Both parsers are chart parsers. Chart parsing
is a type of parsing in which all syntactic structures which are built are placed on a single
graph structure called a chart. A successful parse of a sentence is a list of edges and nodes
that includes the start node of the chart, all the words in the sentence, and the end node.

3.2.1 Head-Driven Phrase Structure Grammar and Unification-Based Semantics
Head-Driven Phrase Structure Grammar (HPSG) is used to represent the linguistic

1 New Query
2 Display SQL
3 Save Last Response
4 Print Saved Response
5 Display a Trend
6 Print Last Trend
7 Make a Comment
8 Stop
WHAT NEXT? >

FIGURE 4. Main menu.

1 # of C/S Representatives
2 Service Call Ratios
3 System Reliability
4 Subscribers per Employee
5 Subscribers per Km of Plant
6 Maintenance Calls
7 Repair Calls per TSR FTE
8 Repair Calls per TSR Hours
9 Specify an Ad Hoc Trend
10 Cancel trend request
WHICH TREND? >

FIGURE 5. Trend menu.

13

knowledge needed by the system. HPSG is head-driven and uses four different classes of
syntactic constituents: head, adjunct, complement and filler. An example of a head-adjunct
structure is scheduled outages where scheduled is the adjunct and outages is the head
(scheduled is here a nominal adjunct). A second example head-adjunct structure is show
manpower for calgary where for calgary is either a verbal adjunct and show manpower is
a head, or a nominal adjunct where manpower is the head. Complements include subjects,
objects, determiners, verbal complements, and sentence complements. Heads share their
head features with the mother. Complements discharge subcategorization requirements on
the head. Fillers discharge binding requirements on the head (binding features provide
information about long-distance dependencies for relative pronouns, interrogative expres-
sions, and “missing elements” often called gaps or traces).

HPSG is considered a highly lexical grammar formalism since the vast majority of lin-
guistic knowledge is represented in the lexicon rather than in the grammar rules. In [23],
for example, only four grammar rules are introduced for handling a wide variety of
English constructions. Our parser requires four grammar rules to cover the kind of con-
structions encountered in our natural language queries, plus a collection of principles
which apply in conjunction with all grammar rules.

HPSG relies on a highly structured lexicon in which most linguistic generalizations
are captured. The lexicon makes use of inheritance mechanisms, similar to those found in
Object-Oriented programming languages, to capture these relationships and reduce redun-
dancy. Furthermore, the “lexical inheritance” processing can be done off-line, as is done in
the system, before any parsing is attempted, to produce an “expanded lexicon” which can
be used by the parser. Using the expanded lexicon, the parser can then combine lexical
entries according to the grammar rules using unification as its basic operation.

If the information of the lexicon is organized in a multiple inheritance hierarchy, it is
easy to modify/update the lexicon. The appropriate class need only be changed, and the
modification will propagate to all the related subclasses. This greatly simplifies the pro-
cess of designing a lexicon. It minimizes the duplication of information.

We have developed a unification-based semantics for HPSG to treat the linguistic prob-
lems described in Section 2.2.3. It became clear that unification alone would not be suffi-
cient to handle the decompositional problems described, so we developed a number of tech-

Grammar rules
and principles

Expanded
lexicon

Semantic representation

Parser

English query

Lexical types

Synonyms and
acronyms

Lexical

compiler

Lexicon

FIGURE 6. The parser.

14

niques for treating them: a context-selection and a priority mechanism. Much of the seman-
tics resides in the lexicon; the rest is in some principles.

We shall describe HPSG and the semantics by considering first the lexicon
(Section 3.2.2), then the grammar rules and principles (Section 3.2.3), paying special
attention to the unification-based semantics. Although our discussion will focus on
HPSG, our treatment of semantic information is also applicable to other unification-based
formalisms (Section 3.2.4)

3.2.2 The Lexicon and Lexical Types
The lexicon consists of a multiple inheritance hierarchy of classes called lexical types

(adopting the terminology of [23]). We call it a multiple inheritance hierarchy since a class
may have more than one superclass. So, an instance of a class will inherit not only the
information associated with its class, but also all the information associated with all of its
superclasses. We do not consider hierarchies in which there is conflicting information.
Issues related to the treatment of conflicting information and defaults are discussed in
[15].

Each lexical type is represented by a feature structure. A feature structure, or equiva-
lently an attribute value matrix or a directed acyclic graph, consists of a set of feature value
pairs where the features are atomic and the values are either atomic or other feature struc-
tures.

The relationship between the different classes and subclasses is defined in terms of the
subsumption relation for feature structures. The multiple inheritance hierarchy can be
viewed as a subsumption lattice. Informally, a feature structure A subsumes a feature struc-
ture B if B contains all the information of A (and possibly more). Subsumption is closely
related to unification ([23], [30]) — one can be defined in terms of the other. The unifica-
tion of two structures A and B is a structure C that contains all the information of A and all
the information of B, and nothing more. In the case where A and B contain conflicting
information, unification is said to fail. Alternatively, one can say that the unification of A
and B results in a feature structure, ⊥ , that contains an inconsistency. All feature structures
subsume ⊥ .

The feature structures used by HPSG have features for phonological (PHON), syntac-
tic (SYN) and semantic (SEM) information. In lexical entries, lists of feature structures are
allowed to appear as the value of specific features. The PHON feature has as its value a list
containing the orthographic representation of a lexical entry.

• Syntactic Information
SYN contains the syntactic information associated with the lexical entry. The value of

this feature is a feature structure containing local (LOC) and nonlocal information. Nonlo-
cal information is concerned with long distance dependencies and need not concern us
here. Local features in general specify inherent syntactic properties of an entry, such as
part of speech, inflection, case, and subcategorization (including the traditional notion of
government). LOC information is broken down into HEAD, SUBCAT and LEX features.

 HEAD features contain intrinsic syntactic information about a constituent like its cat-
egory, verb form (finite, past participle, etc.), and prepositional form. The HEAD feature
called HEADS [26] contains a set of descriptions, one for each construction that can be
modified by the adjunct. For example, the HEADS feature for an adjective will contain a

15

sign for a noun.
The SUBCAT field contains a list of feature structures, one for each complement that

the head may be combined with in a derivation. For example, since a noun may be com-
bined with a determiner to produce a noun phrase, there will be a feature structure for a
determiner on the SUBCAT list of a noun. Similarly, graph, an intransitive verb, subcate-
gorizes for only one NP (the subject). In subcategorizes for two NPs, the prepositional
subject and object.

LEX is simply a binary value for that is usually assigned the value + for entries in the
lexicon, and - for phrases formed from lexical entries. Note that if a phrase appears in the
lexicon, then it will have a + value for its LEX feature. Also, some compound construc-
tions formed from lexical entries can still be considered to be lexical, as specified by the
grammar rules of HPSG that will be introduced in Section 3.2.3.

• Semantic Information
SEM contains semantic information about lexical entries and is comprised of features

for TYPE, TABLES, FUNCTION and REFERENT. TYPE contains basic syntactico-
semantic information used to assign structure to compound nominals, and to control ambi-
guity as discussed in [26]. TABLES contains representations of statistical tables, category
attributes and statistical attributes from the RCIOPS database. FUNCTION contains the
priority mechanism used to tackle some of the decompositional problems outlined in
Section 2.2.3. REFERENT fulfils two functions: it percolates adjunct information through
compound noun phrases and it contains the context-selection mechanism used for tackling
other decompositional problems.

TYPE information

TYPE information consists of functional type (FTYPE) and domain type (DTYPE)
information, both arranged as hierarchies. The functional type hierarchy embodies certain
aspects of the Rogers statistical database design that appear to be of linguistic signifi-
cance. We have noticed that the complex noun phrases used in queries to the Rogers data-
base can be broken down into nominals and nominal modifiers that refer to statistical
tables, category attributes, and statistical attributes. Some examples were given in
Section 2.2.3.

The nominals and modifiers can be grouped into six classes: statistical type (STYPE),
statistical set (SSET), modifier set (MSET), entity set (ESET), modifier (MOD), and pre-
modifier (PMOD). Their hierarchical relationships are shown in Figure 7. (The FTYPE hi-
erarchy has been ported, with some modification, to other databases.)

statistical type (e.g., summary, sum, count, average, and ratio)
Nouns from this class are heads which denote types of statistical measure such as aver-

ages and ratios.
statistical set (e.g., statistics, log, performance, activity, and problem)
Nouns from this class may be semantically vacuous, that is, we assume that all requests

are for some set of statistics and these nouns may not carry any information that can help
identify the particular statistics sought by a user. Expressions of this type may be used to
modify a statistical type, e.g., log summary, performance count, and activity ratios.

modif ier set (e.g., faults, calls, and lines)
Expressions in this class denote “entity types” — sets of which are described by the sta-

tistics in the database. An expression of this type (partially) specifies which statistics are

16

being requested — either a statistical table or a statistical attribute — and can be viewed as
a modifier of a statistical set, or a statistical type, though they generally require modifica-
tion by an entity set.

entity set (e.g., outage, reliability,subscriber,terminal,trouble, and csr)
Expressions in this class also refer to either a statistical table or a statistical attribute and

can be viewed as a modifier of a modifier set, or a statistical set, or a statistical type (e.g.,
subscriber statistics, outage summary, trouble call performance, and phone call perfor-
mance).

modif iers (e.g., region, division, service, and system)
Expressions in this class refer to the attributes used to categorize entities into sets.

Members of this class can be viewed as modifiers of (subclasses of) entity sets, e.g., service
call and system reliability. There is a close correspondence between modifiers and category
attribute names in the database.

pre-modif iers (e.g., Western, Vancouver, basic, and terminal)
Expressions in this class denote values of category attributes, and can be viewed as

modifiers of (subclasses of) modifiers, e.g., Western region, Western division, and basic
service.

A further class is statistical display (SDISP) words, concerned with how information
is presented

The domain type hierarchy reflects the contents of the database. DTYPE information is
used to describe the inherent semantic category of a lexical item and is also used in selec-
tional restrictions. Part of the domain type hierarchy used in SystemX is shown in
Figure 10. Some the hierarchy concerns number and the domain-general category attributes
S_Date (time) and Location , but the largest part concerns the six database subdomains.
This information about subdomains is used to isolate statistical tables and attributes. The
densest parts of the hierarchy are those for the two multi-table subdomains, service calls and
telephone.

TABLES information

The TABLES information consists of database information from a main table (MAIN)

ftype

mods

nonmod

pmod

mod

pivot

sform

eset

mset

stat
sset

stype

sdisp

FIGURE 7. The functional type hierarchy.

17

plus a list of feature structures containing information from other tables (SUBTABLES).
The feature structure associated with each table has an atomic valued feature for the table
name, along with the COLUMNS feature which takes as its value a feature structure con-
taining database column names and their values. This is illustrated in the feature structure
shown in Figure 10 (based on Figure 6 from [7]). A “join” is indicated by identical vari-
ables prefixed with a “@” in the value of the LOCATION_CODE feature. NIL is a special
“anonymous variable” which is used when the value is unknown but required.

FUNCTION information

We introduced the FUNCTION attribute for use by the Semantics Principle. The only
possible values for this attribute are priority or default, but as with any other feature, its
value may be left as unspecified. As will be seen in Section 3.2.3, the value of the FUNC-
TION feature will be used in a priority mechanism to allow meanings of adjuncts to over-
ride (or be overridden by) the meanings of their heads. The priority mechanism stems the
proliferation of lexical entries and allows some meanings to be stronger than others, hence
projected is given priority, thereby overriding TSR hours in projected TSR hours. With an
adjunct as FUNCTION = priority , a standard HPSG treatment of the semantics of

dtype

locn

time

regn

dvsn

mnth
gen_mth

spec_mths

gen_yr
yr_gen

yrs_gen

spec_yrs

yr

dmns

outgs

mpwr
subs

plant

servcall

servc
bservc
mainc
troc
termc
retc

tels
svrep

phone

vru
csr
no_csr
actl
budg

mth_gen
mths_gen

FIGURE 8. The domain type hierarchy.

18

adjuncts can be used, i.e., the semantics of the mother is that of the adjunct. Similarly, if a
head is FUNCTION = default and if the adjuncts TABLE feature is non-nil, then the
semantics of the mother is that of the adjunct. In other words, if a head is FUNCTION =
default then the adjunct is given priority. A head can also have FUNCTION = priority to
appear either on an adjunct or on a head. Also, if a constituent is specified as FUNCTION
= priority and it has a null (empty) semantics, then the unification fails.

REFERENT information

The REFERENT feature was originally intended to act much like the INDEX or INDI-
CES feature introduced in [23]. However, it has evolved so that instead of representing a
collection of semantic indices, it contains a collection of potential meanings associated
with an expression. Recall that the actual meaning of an expression is contained within its
TABLES feature. The value of a REFERENT feature is a feature structure where the fea-
ture names index the different possible meanings stored as the feature values.

The referent feature allows various possibilities contingent on the head which a nomi-
nal modifies. Each attribute in the referent corresponds to a statistical head. For example,
outage has a REFERENT feature COUNT which has as its value the meaning of the
expression count in the phrase outage count. As will be discussed in Section 3.2.3 in
detail, this allows different information to be used, depending on context. This is used in
the outages, subscribers, service calls and telephone subdomains.

Rather than write separate senses — and hence separate entries — for many words, we
have written single entries, each containing a number of context-specific senses. There is
one entry for statistics, which always combines with other words in the same way: its pres-
ence indicates that all table information should be given.

3.2.3 The Grammar Rules and Principles

• Grammar Rules
The grammar rules used in HPSG establish relationships between four different classes

of syntactic constituents introduced in Section 3.2.1: head (H), complement (C), adjunct
(A) and filler (F). Specifically, the rules state how the different information in one constitu-
ent is related to its sister and mother constituents in a derivation tree. Two grammar rules
are used for combining heads with complements and two for combining heads with ad-

MAIN TABLE

COLUMNS

acmoutages

OUTAGE_TYPE
DATE
LOCATION_CODE

MAIN TABLE

COLUMNS LOCATION_CODE
LOCATION_DESC

NIL

@Y

@Y
"Vanc"

SUBTABLES

TABLES

"June"

FIGURE 9. TABLE feature in a feature structure.

19

juncts. The grammar currently does not use any fillers. The grammar rules, which are
shown below, are discussed in detail in [26].

The first rule combines a lexical head with everything but its final complement. It can
combine a lexical head verb with all of its complements except its subject, and it can com-
bine a preposition with its complement (object). This rule can also be used to convert a
lexical head requiring only a single complement into a non-lexical constituent still requir-
ing a single complement. The rule is used with lexical heads of numerous phrase types
including verb phrases, common noun phrases, and prepositional phrases. This single rule
captures the same generalizations as a set of traditional phrase structure rules which
include the following:

VP → V, NP VP → V, NP, NP
VP → V, PP PP → P, NP
N’ → N VP → V

The second rule combines a non-lexical head with its final complement. So it can
combine a verb with its subject and a noun with its determiner, playing the role of tradi-
tional rules like:

S → NP, VP NP → DET, N’
The third rule combines saturated lexical adjuncts ð— those with empty SUBCAT lists

like adjectives, proper nouns and adverbs — with their heads. It can apply to either lexical
or nonlexical heads, but the head must be unsaturated, specially having only one element
on its subcategorization list. (Saturated adjuncts have empty SUBCAT lists and hence do
not subcategorize for anything; nonsaturated adjuncts have something on their SUBCAT
list.) The third rule thus combines adjectives with their heads, like in the phrase western
region, and proper nouns with their heads as in Vancouver outages. Viewed in terms of tra-
ditional phrase structure rules, it can capture relationships like the following:

N → Adj, N N’ → NP, N’
The final rule allows unsaturated heads to be modified by unsaturated adjuncts, like

prepositional phrases and verb phrases. This rule requires the head and adjunct to either
both be lexical, or both be nonlexical. Relationships captured by this rule include:

N’ → N’, PP N’ → N’, VP
N’ → N’, N’ N → N, N
VP → VP, PP

• Principles
Each of the rules, as presented above, is processed in conjunction with a collection of

principles. Five principles are used. Four are taken from HPSG: the Head Feature Princi-

[SUBCAT < [] >] → H[LEX +, INV -], C*

[SUBCAT < >] → H[LEX -], C

[SUBCAT < [] >, LEX 1] →

 H[LEX 1 , A[SUBCAT < >, LEX +, HEADS <... H ... >]

[SUBCAT < [] >, LEX 1] →
 H[LEX 1], A[SUBCAT < [] >, LEX 1 , HEADS <... H ... >]

20

ple, Subcategorization Principle, Constituent Ordering Principle, and Semantics Princi-
ple. The first three principles are adopted unmodified; we have modified the Semantics
Principle. The fifth principle is our own and is called the Semantic Contribution Principle.

Principles – syntactic
The Head Feature Principle, as described in [23], simply states that the HEAD feature

of some compound constituent is identical to that of its head daughter in a derivation. The
same feature structure is shared as the value of the HEAD feature in these two constitu-
ents.

 The Subcategorization Principle states that the SUBCAT list of a compound constitu-
ent is formed by taking the SUBCAT list of its head daughter and removing from this list
the feature structures that correspond (via unification) with its complement daughters.
Thus the resulting constituent is still looking for those complements from its head daugh-
ters that have not yet been found.

The Constituent Ordering Principle is used to determine how the information con-
tained in the PHON attributes of sister constituents is combined to form the phonology of
the parent constituent. This principle makes use of linear precedence constraints which
determine the left to right ordering of the different constituents. For our grammar, the only
linear precedence constraints needed are that: (a) lexical heads precede their complements,
(b) nonlexical heads follow their complements, (c) complements are ordered correspond-
ing to their position on the SUBCAT list of the head daughter, (d) nominal or adjectival
adjuncts precede their heads, and (e) verbal or prepositional adjuncts follow their heads.
We shall return to discuss the Semantics Principle momentarily.

The interaction of all these principles along with the first three grammar rules can be
seen in the derivation tree associated with the phrase the unscheduled outages in
Figure 10. Notice that the head daughter (H) in every case shares the value of its HEAD
feature with its mother (the Head Feature Principle). In cases where a compound constitu-
ent has no complements, the Subcategorization Principle ensures that they have the same
SUBCAT lists. However, in the one case where we do have a complement daughter, notice
that the parent’s SUBCAT list does not contain the sign for this complement; the feature
structure associated with the complement is unified with the corresponding sign on the
subcategorization list of the head daughter.

In the above example, notice that there are two different classes of constructions: one
in which a head is combined with zero or more complements (which we will call a head-
complement structure), and one in which a head is combine with a single adjunct (a head-
adjunct structure). This distinction is important for describing the relationship between the
semantic information of a constituent and its daughters.

Principles – semantic
Our Semantics Principle describes how the REFERENT and TABLES information of a

complex constituent is formed from that of its daughters. In a head-complement structure,
the REFERENT of the complex structure is that of the head. In a head-adjunct structure,
the REFERENT of the single adjunct is identified with the resulting constituent. If we
were to adopt the treatment of semantic content proposed in [23] then we would get the
same relationship for the REFERENT. The Semantics Principle of [23] (Chapter 8) states
that the semantic content of a complex structure is “token identical” with that of the
adjunct daughter in a head-adjunct structure, and with that of the head daughter otherwise.
However, in determining the TABLES information of a complex structure, we desired

21

more flexibility than would be afforded by adopting Pollard and Sag’s proposal.
The relationship between the TABLES informations of the complex constituent and its

daughters depends on the values of FUNCTION feature on the daughters. It also depends
on whether specific constituents have any information (in the way of a table name or a col-
umn value) to contribute to the resulting constituent. This additional dependency is
reflected in the Semantic Contribution Principle, which was introduced in [26]. It requires
the adjunct to have some semantic content in a head-adjunct structure; semantically void
adjuncts are thus not allowed. An adjunct is considered to make some contribution as long
as it has features for TABLE or for COLUMNS.

In a head-complement structure, the table unify procedure is used to combine the data-
base information contained in all the tables of the constituents. However, we cannot just
use simple unification of the corresponding feature structures. A more selective procedure
is needed to combine all of the information from all of the constituents, making sure that
the resulting semantic information is still meaningful with respect to the database.

Given two feature structures occurring as the value of the TABLES feature in two fea-

SYN | LOC

PHON

SUBCAT

LEX
HEAD

< >
2
-

< the unscheduled outages >

SUBCAT

LEX
HEAD 2

< 1 >

+

SYN | LOC

PHON

SUBCAT

LEX
HEAD 2

-

SYN | LOC

PHON

< unscheduled outages >

< unscheduled outages >

< 1 >

SYN | LOC

PHON

SUBCAT
HEAD

SYN | LOC

PHON < outages >

SUBCAT
HEAD

< 1 >
2

LEX +

CAT noun

SYN | LOC

PHON

SUBCAT
HEAD 2

LEX +

< the >

< >

CAT det

1

HC

H

HA

CAT adj

3< unscheduled >

+LEX

HEADS < 3 >

< >

FIGURE 10. Interaction of grammar rules.

22

ture structures, we attempt to unify the two table structures that are the value of the MAIN
feature in each of the two constituents. If one of the table structures is unspecified with
respect to the value of the TABLE feature (the table name), then ensure that the columns in
this underspecified table are a subset of those in the other table. If not, then do not allow
them to be combined (this prevents us from creating structures which would be meaning-
less with respect to the database). If both tables do not have a table name specified or if
they both do have a table name specified, then simply unify them. If the unification does
not succeed, then try to find some pair of table structures in the TABLES or SUBTABLES
that share some column name; look for a join. If a join is found, then all the tables and sub-
tables are carried over into the SUBTABLES of the resulting constituent, with the MAIN
table being the same as that of the head. The treatment of joins in general is discussed in
[5] and [9].

In a head-adjunct structure, use is made of the FUNCTION feature for determining the
value of the TABLES feature for the resulting constituent. Recall that the possible values
for the FUNCTION feature are default or priority , or unspecified. The FUNCTION fea-
ture was introduced to stem proliferation of lexical entries and because we want some
meanings to be stronger than others for situations.

The priority mechanism stems the proliferation of lexical entries and allows some
meanings to be stronger than others. For example, the meaning of projected in projected
TSR hours is given priority, thereby overriding the meaning of TSR hours to get the appro-
priate meaning as shown in Section 2.2.3. When an adjunct is FUNCTION = priority , a
standard HPSG treatment of the semantics of adjuncts can be used, i.e., the semantics of
the mother is that of the adjunct. Similarly, if a head is FUNCTION = default and if the
adjunct has a value specified for its TABLE feature, then the semantics of the mother is
that of the adjunct. In other words, if a head is FUNCTION = default then the adjunct is
given priority. A complete description of how the FUNCTION feature is used in conjunc-
tion with the Semantics Principle is captured in the following algorithm which is used to
determine the value of the TABLES feature for a complex constituent.

1. If the adjunct daughter has priority , then the TABLES information of the resulting con-
stituent is token identical to that of the adjunct daughter. Note that this corresponds to
the case covered by Pollard and Sag’s semantics principle.

2. If the head daughter has priority , then its TABLES information is used instead.
Observe that if both constituents had priority , the previous case would have been
selected.

3. If the adjunct is specified to be default and if the semantics of the head-daughter does
specify a table name, then the TABLES information of the head is used.

4. If the head is default and if the adjunct specifies a table name, then the information
from the adjunct is used.

5. Otherwise, table unify the TABLES information of all of the daughters.
Due to the nature of the parser’s grammar rules, in a head-adjunct structure it is possi-

ble for the adjunct to access all of the information contained in its head. This is because the
adjuncts HEADS feature will contain a sign that is token identical to that of the head-
daughter. Not only can the adjunct examine features associated with the head that it is
modifying, but it can also assign values to features on the head. Depending on the context,

23

the prospective adjunct may want to incorporate only selective information from its head,
incorporate it into the adjunct’s own semantics, and then use this as the semantics of the
resulting constituent. The adjunct can do this by imposing a default value for the FUNC-
TION feature of its head. Conversely, in other cases the adjunct may not want its own
semantic information to contribute toward the semantics of the resulting constituent. It can
do this by specifying a priority value on its head.

Similarly, some lexical entries always override information of their sister constituents.
These lexical entries can be specified as priority in the lexicon. Conversely, some lexical
entries have a default interpretation which is always overridden when the entry is com-
bined with some other constituent. Such entries will have a default value for their function
feature. Note that the value of the FUNCTION feature is not passed up to the resulting
constituent by any of its daughters; only the value of the HEAD feature is passed up from
a head daughter to its mother. However, when an adjunct sets a value for the FUNCTION
feature of its head, then the relationship is contained within the adjunct’s HEADS feature,
which is within the HEAD feature. Thus, this FUNCTION information can be passed up
to more complex constituents indirectly.

When an adjunct overrides the meaning of its head, the head’s category attribute infor-
mation (S_Date and Location plus subdomain-specific category attributes) must be
saved. This can be easily achieved as shown in the lexical type dateloc introduced in
Figure 11. Note that the adjunct has access to all the information associated with its head

(including its semantic information). The adjunct shares the S_Date and Location
information of its head as reflected in the coindexing variables 1 and 2, plus it specifies
that its own semantics will take priority.

To deal with the overrides in a specific subdomain, the outages subdomain for
instance, we define a lexical type outage_override which inherits the information

dateloc type @semsign with
 syn:loc:head:heads =

[@semsign with
 sem:tables:main:columns:s_date = @var(D) with
 sem:tables:main:columns:location = @var(L)] with
 sem:tables:main:columns:s_date = @var(D) with
 sem:tables:main:columns:location = @var(L) with
 sem:function = priority.

S_DATE
LOCATION 2

1

S_DATE
LOCATION 2

1

SYN | LOC | HEAD | HEADS

FUNCTION

TABLES | MAIN | COLUMNS

prioritySEM

SEM | TABLES | MAIN | COLUMNS

FIGURE 11. Overrides and information saving

24

from the dateloc lexical type and can then be used when selecting information from the
head and overriding the information from the head. This lexical type is shown both as a
feature structure and in terms of its HPSG-PL specification in Figure 12.

When the semantic contribution of an adjunct is overridden by that of the head, it is
more difficult for the head to access and preserve information associated with the adjunct.
As reflected in our grammar rules, there is no direct means for a head to access semantic
information (or really any information) associated with its adjunct. In the revised version
of HPSG [23], cyclic feature structures are allowed and thus such bidirectional dependen-
cies are allowed. However, there is an indirect means by which the head can access infor-
mation. The adjunct can place (or instantiate) information into the head, which the head
can then examine knowing that it came from the adjunct. We frequently use the REFER-
ENT feature of the head to hold this information. Let us look at a specific example to illus-
trate how this contextual information is passed and used.

In our lexicon, there are three entries for count because it has a special meaning in the
service calls subdomain, another special meaning in the telephone subdomain, and a third
meaning for the four remaining subdomains, including outages. The contextual technique
allows those four remaining subdomains to use a single entry. In the service calls subdo-
main, heads like count, ratio and breakdown look inside the COUNT, RATIO or BRK-
DOWN feature of the REFERENT feature structure that has been passed to them by
adjuncts like trouble call or service call, and use the TABLES information as their own.
These heads are specified as FUNCTION = priority so that their semantics are used
instead of that of their adjunct. Furthermore, since these heads might themselves act as
adjuncts to some subsequent head, these heads instantiate information within their own
HEADS feature which is available for future potential heads.

Such dependencies are illustrated in the feature structures for the phrases service call
in Figure 13. Notice that the REFERENT feature within the HEADS feature (i.e., the
REFERENT of a constituent to be modified) has different TABLES information depend-

outage_override type @dateloc with
syn:loc:head:heads =

[@semsign with
 sem:tables:main:columns:outage_code = @var(C)] with

sem:tables:main:columns:outage_code = @var(C).

FIGURE 12. Subdomain specific overrides.

OUTAGE_CODE

S_DATE
LOCATION

1
2

3

OUTAGE_CODE

S_DATE
LOCATION

1
2

3

SYN | LOC | HEAD | HEADS

FUNCTION

TABLES | MAIN | COLUMNS

prioritySEM

SEM | TABLES | MAIN | COLUMNS

25

ing on the attribute selected. For example, the COUNT|TABLES feature contains the
TOT_SERVC_COUNT column while the RATIO|TABLES feature contains the TOT_-
SERVC_RATIO column. The BRKDOWN|TABLES feature specifies a different table
(and thus different columns) than in the other two cases. This reflects the three different
meanings associated with the phrases service call count, service call total, and service call
breakdowns. Notice also that the meaning of the phrase service call by itself is distinct
from any of these cases. The REFERENT feature with the HEADS attribute contains addi-
tional referent information which would be relevant for subsequent modifiers, thus allow-
ing analyses for phrases like service call count breakdown. Due to the way in which our
lexical entries are structured, there is some unnecessary information that is carried along
in the values of features like REFERENT|COUNT|REFERENT|COUNT. This informa-
tion is associated with the dateloc lexical type introduced earlier in this section.

Notice in the sign contained in the HEADS list of service call that there is a selection
of different possible semantics for phrases which in service call can appear as a modifier.
Whatever service call modifies will have all this information instantiated within its own
feature structure. So if service call modifies a noun like count, shown in Figure 14, then
the value of count’s SEM feature will contain all the REFERENT information provided.
The lexical entry for count is constructed so that it merely looks into the REFERENT fea-

SEM TABLES MAIN COLUMNS

TOT_SERVC_RATIO x()K
TOT_SERVC_COUNTx()J
LOCATION 2
S_DATE 1

TABLE x()acmservctot

SYN LOC HEAD HEADS SEM REFERENT

BRKDOWN TABLES MAIN COLUMNS

SERVC_GRP_RATIO x()I
SERVC_GRP_COUNTx()H
SERVCGRP_CODE x()G
LOCATION 2
S_DATE 1

TABLE x()acmservcgrp

RATIO

REFERENT

BRKDOWN TABLES MAIN COLUMNS

SERVC_GRP_RATIOx()F
SERVCGRP_CODE x()E
LOCATION 2
S_DATE 1

TABLE x()acmservcgrp

RATIO TABLES MAIN COLUMNS LOCATION 2
S_DATE 1

COUNT TABLES MAIN COLUMNS LOCATION 2
S_DATE 1

TABLES MAIN COLUMNS
TOT_SERVC_RATIOx()D
LOCATION 2
S_DATE 1

TABLE x()acmservctot

COUNT

REFERENT

BRKDOWN TABLES MAIN COLUMNS

SERVC_GRP_COUNTx()C
SERVCGRP_CODE x()B
LOCATION 2
S_DATE 1

TABLE x()acmservcgrp

RATIO TABLES MAIN COLUMNS LOCATION 2
S_DATE 1

COUNT TABLES MAIN COLUMNS LOCATION 2
S_DATE 1

TABLES MAIN COLUMNS
TOT_SERVC_COUNTx()A
LOCATION 2
S_DATE 1

TABLE x()acmservctot

PHON ,service call

FIGURE 13. Analysis of service call.

26

ture and equates its own meaning with that contained in the COUNT feature of its REFER-
ENT. During a derivation, this means that count uses as its own meaning what ever
meaning is supplied to it by the phrase that is modifying it. So on its own, count does not
have a meaning (in our domain), it only has a meaning in the context of some modifier.
The final semantics of the phrase service call count is provided in Figure 15.

Notice how our approach takes care of the compositionality problems discussed in
Section 2.2.3. We take care of them by having the semantics of the modifier contain a
selection of different meanings. When a modifier combines with a head, the head then sim-
ply selects the information supplied to it, and uses it as its own semantics. With the head
declaring itself to have priority , it means that its own semantics will be used in determin-
ing the semantics of the resulting compound.

3.2.4 Summary
We have spent a fair amount of space discussing how semantic information from the

lexicon can be used during a derivation to obtain the semantics of a complex constituent
particularly in those cases where a purely compositional approach to semantics would be
troublesome. Our approach assumes a unification based treatment of semantics in which
information is encoded in feature structures. Although the simple unification of the feature
structures works in some cases, we need the additional flexibility provided by the default
and priority features which gives us a selective form of unification. We have assumed that
compounding is treated syntactically as adjunction, and the adjunct can examine or specify
all the information associated with its head. Such an assumption is also consistent with
categorial grammar approaches and thus the same techniques that we use might be used
with formalisms such as Unification Categorial Grammar [4]. We have also assumed that
the head can access specific semantic information associated with its adjunct. In some for-
malisms, it is easy to describe these bidirectional (or even circular) relationships. But in
the original formulation of HPSG, this was not allowed. Thus we developed some infor-
mation passing techniques (using REFERENT information) that permitted the head to

SEM

FUNCTION priority

REFERENT COUNT REFERENT 1
TABLES 2

CLASS servcall
TABLES 2

SYN LOC HEAD HEADS SEM REFERENT 1

PHON count

FIGURE 14. Analysis of count.

SEM TABLES MAIN COLUMNS TOT_SERVC_COUNTx()A
TABLE x()acmservctot

PHON , ,service call count

FIGURE 15. Analysis of service call count.

27

play a role in determining the resulting semantics. These information passing techniques
are not specific to HPSG, and could be adapted for other formalisms as well.

3.3 Semantic Representations to SQL via Logical Form
HPSG semantic representations are translated first into an internal logical form before

being transformed into SQL. The SystemX logical form is a set domain relational calcu-
lus. Its inspiration comes from the logical form used in the TQA natural language inter-
face [12], to which it retains many similarities. Since it is a relational calculus it can be
translated into any relational query language, thus enabling SystemX to be transported to a
wide range of relational database management systems.

During the process of translating a semantic representation of a query into logical form
and then into SQL, information is added which enhances the report ultimately displayed.
SystemX has a number of strategies for improving the presentation of the tabular reports it
produces. These include reducing noise in the data by making assumptions about the data
users want to see, by ordering the rows and columns in such a way that the reports are easy
to understand, and by using English expressions rather than internal database names and
codes whenever possible. The information used by the system to implement these strate-
gies is acquired during the customizing process either from the database itself or from
someone who is familiar with the application.

Figure 16 shows a semantic representation for the sentence Give me the unscheduled
outages.

Figure 16 is a representation of the same sentence in logical form.The logical form has
been enhanced with some defaults which are discussed in Section 3.3.1.

((TABLES
 ((MAIN
 ((COLUMNS
 ((OUTAGES NIL NIL) (OUTAGE_CODE 20 NIL)
 (LOCATION NIL NIL)
 (S_DATE NIL NIL))
 NIL)
 (TABLE ACMSREL NIL))
 NIL)
 (SUBTABLES NIL NIL))
 NIL)
 (FUNCTION NIL NIL)
 (REFERENT NIL NIL)
 (TYPES ((FTYPE NIL NIL) (DTYPE NIL NIL))
 NIL))

FIGURE 16. Semantic representation for Give me the unscheduled outages.

28

Table 1 shows the output produced from the SQL statement of Figure 16.

Certain problems exist with the intelligibility of Table 1:

• The company divisions are referred to by their internal database codes, rather than by
their English names.

• Column names are names of attributes of the database relation from which the data for
the report was extracted. In this case the headings are fairly intuitive, but often attribute
names are anything but intuitive to end users.

• The columns are ordered such that the column containing the statistics which measure
the sets of outages appear to the left of the columns containing the attributes which
specify those sets.

• The rows are not ordered appropriately. The row describing the Western Region as a
whole (location 6300), appears above the rows describing the divisions within the
region rather than below them where summary lines in statistical reports generally are
found.
 SystemX corrects these problems via enhancements made first to the logical form rep-

resentation and then to the SQL. The SQL representation ultimately generated has the

Table 1: Output generated from SQL.

OUTAGES LOCATION S_DATE

40 6300 31-AUG-92

14 2800 31-AUG-92

2 2740 31-AUG-92

4 2730 31-AUG-92

4 2720 31-AUG-92

7 2710 31-AUG-92

9 2700 31-AUG-92

(((SETX X22
(SETX X23

(SETX X24
(AND

(RELATION ACMSREL
(S_DATE LOCATION OUTAGE_CODE OUTAGES)
(X24 X23 '20 X22)
(= = = =))

(MAX X24 ((SETX X25 (RELATION ACMSREL (S_DATE) (X25) (=)))))
(IN* X23 ('2700 '2710 '2720 '2730 '2740 '2800 '6300))))))))

FIGURE 17. Logical form for Give me the unscheduled outages with defaults added.

29

much more readable output shown in Table 2. In the rest of Section 3.3the enhancement

process is described in detail.

3.3.1 Addition of Defaults
Default selection restrictions are added to queries during the translation of the seman-

tic representation into logical form. For example, in the RCIOPS application, if a query
does not mention time and location then specifications for the most recent possible time
and an appropriate set of locations will be added. (For our target user, the Vice-President
of Customer Service for the Western region, which is the default location set encompass-
ing the divisions under his purview.) Defaults are added to the system when it is being cus-
tomized to a particular application. Figure 16 shows the logical form for Give me the
unscheduled outages with time and location defaults added.

3.3.2 Substitution of English Names for DB Identifiers
Another enhancement made to the logical form representation of a query causes the

substitution of English names for internal database identifiers in the reports presented to
the user. The information used in the substitution is extracted automatically from reference
relations, i.e., database tables which relate attributes whose values are names, with
attributes whose values are identifiers. For example, the relation Rflocations is a ref-
erence relation in the Rogers database: it relates the attribute location , whose values
are codes identifying the divisions and regions within the company (e.g., 2700), with the
attribute location_desc , whose values are the English names of those divisions and
regions (e.g., Vancouver). In order to guarantee uniqueness of identifiers and permit effi-
cient comparison of database values, codes such as the ones constituting the domain of the
location attribute are commonly used within databases to identify objects in the appli-
cation domain. However, users of the database may not know the denotation of these
codes. The presence of reference relations in the database facilitates the use of English in
reports in place of the codes. Figure 18 shows the logical form from Figure 16 after the
substitution enhancement has been performed.

The substitution of names for identifiers subsequent to the process of the semantic
interpretation is highly desirable for the parser and lexicon developers. This is because the

Table 2: The same output made more readable.

Date Location # of Outages

31-AUG-92 VANCOUVER 9

31-AUG-92 VICTORIA 7

31-AUG-92 FRASER 4

31-AUG-92 SURREY 4

31-AUG-92 ABBOTSFORD 2

31-AUG-92 CALGARY 14

31-AUG-92 WESTERN CANADA 40

30

semantics of the parser is closely tied to the structure and contents of the database, so lexi-
cal entries contain tokens with the same names as the identifiers that denote domain enti-
ties within the database, e.g., (Location 2700) for Vancouver and (Servcgrp_Cod e
40) for terminal calls. Lexicon developers can thus focus on the relationship of the lexi-
con to the database without being concerned about the readability of reports.

SystemX acquires knowledge of reference relations via a simple dialogue with the
application developer (see Figure 19).

3.3.3 Addition of English Aliases
SystemX enhances the SQL it generates from logical form representations by substi-

tuting English aliases for database attribute names normally used as column headings in
report tables. Database attribute names frequently are not easily understood by users of the
database. Figure 20 shows the SQL generated from the logical form in Figure 18 with
English aliases added (e.g., “Location” is the alias for LOCATION_DESC).

English aliases are acquired during application development via a dialogue with the
developer, and stored along with other information about attributes (such as data type and
length, etc.) automatically acquired by the system from the data dictionary.

FIGURE 18. Logical form following name substitution.

((SETX X22
(SETX #:NONE-1853

(SUBX X23
(SETX X24

(AND
(IN* X23 ('2700 '2710 '2720 '2730 '2740 '2800 '6300)))
(MAX X24 ((SETX X25 (RELATION ACMSREL (S_DATE) (X25)

(=)))))
(RELATION ACMSREL

(S_DATE LOCATION OUTAGE_CODE OUTAGES)
(X24 X23 '20 X22)
(= = = =))

(RELATION RFLOCATIONS
(LOCATION_DESC LOCATION) (#:NONE-1853 X23) (= =))))))))

Is ACMMAN a reference relation? (Y or N): n

Is RFLOCATIONS a reference relation? (Y or N): y

Which of the following attributes in relation RFLOCATIONS contains
names of entities denoted by values of attribute LOCATION:
LOCATION_DESC CONTAIN_CODE REF_NO?
(Type nil to quit) --> location_desc

Is RFOUTAGES a reference relation? (Y or N): y

FIGURE 19. Acquiring identifier/name pairings.

31

3.3.4 Ordering of Report Columns
During the process of translating logical form into SQL, SystemX arranges for the

rows and columns of the report tables to be ordered in a perspicuous manner.
The basic strategy SystemX follows when ordering report columns is to place the col-

umn(s) which denote the type of entity described by the report at the left of the table. We
call such columns, subject columns. For example, in a table reporting the grades assigned
to students in a course, the column containing the students’ names (or numbers) is the sub-
ject column and will appear at the left. This strategy allows readers of the report to distin-
guish quickly the subject of a row from the data associated with that subject. SystemX
uses information about primary key attributes acquired automatically from the data dictio-
nary (or from the application developer if it is missing from the dictionary) to decide
which reports columns are the subject columns. Essentially, if a report column corre-
sponds to a primary key attribute, or if it corresponds to a name attribute in a reference
relation, then it is deemed to be a subject column.

SystemX arranges the subject columns in report tables in order of generality when
more than one column identifies the subject. This arrangement allows the user to scan the
table from left to right to “pin down” a particular subject and its associated data. For
example, consider the semesterly report on grades for an entire university department. The
subject of the report is enrollments and is identified by a pair of columns, one containing
course names and the other containing student numbers. Within the table there are fewer
distinct course names than there are distinct student numbers. Thus, the course names will
be placed in the first column and the student numbers in the second. Users can quickly find
the particular grade they are interested in by locating the course name (from the relatively
small number of distinct course names) at the extreme left, move to the right to find the
student number from among the (relatively) small subset of the distinct student numbers
associated with the course name, and finally locate the grade by continuing to the right.
SystemX dynamically determines the ordering of the subject columns in tabular reports by
determining (once per session) the number of distinct values in each associated attribute
via a database query. Once the size of the domain is established for a particular attribute it
is saved within the ADKB for future use during the current session.

When a particular attribute does not fit into this ordering strategy, SystemX allows
developers of application systems to override the strategy by specifying a relative ordering
weight for the attribute to be stored in the ADKB. For example, it is frequently the case in
applications which contain historical data that the columns containing temporal values
should be placed leftmost in a report, regardless of the length of the history stored in the
database (i.e., regardless of the number of values contained in the corresponding

SELECT A.S_DATE “Date”, B.LOCATION_DESC “Location”, A.OUTAGES
“# of Outages”
FROM ACMSREL A, RFLOCATIONS B
WHERE A.OUTAGE_CODE = 20
 AND A.LOCATION = B.LOCATION
 AND A.S_DATE = (SELECT MAX(DISTINCT C.S_DATE) FROM ACMSREL C)
 AND A.LOCATION IN (2700, 2710, 2720, 2730, 2740, 2800, 6300)
ORDER BY A.S_DATE, B.REF_NO

FIGURE 20. SQL with English names added.

32

attributes). The location of the Date column in Table 2 was determined by using this
override facility.

3.3.5 Ordering of Report Rows
Unless the user has specifically mentioned a preferred ordering in her query, SystemX

orders rows in tabular reports by the values in the subject columns in the same order as the
columns appear in the report. In the case of a department’s semesterly grades report whose
subject columns are course_name and student_number in that order, this row
ordering strategy will arrange the rows first into groups of courses (alphabetically ordered
on course names), and order the rows within course groups numerically on student num-
bers.

SystemX provides the facility to specify that row ordering is to take place on attributes
other than key attributes or name attributes. For example, the values of the attribute
ref_no in the relation Rflocations impose a certain order onto the various divisions
and regions in the company. As Figure 20 and Table 2 illustrate, SystemX automatically
makes the appropriate substitution of the ref_no attribute for the location_desc
attribute in the SQL ORDER BY clause which specifies the order of the rows in the report.

3.4 Graphical Data
SystemX is able to present data in graphic form. Although users find this type of pre-

sentation highly useful, specifying the parameters which define the desired graph tends to
be a complex task. Underlying many executive information systems are historical statisti-
cal databases that summarize company operations over periods of time. Users of such
databases often wish to see line graphs which show the trend in the numbers representing a
particular facet of the business. Anomalies and other items of interest are usually readily
apparent in these types of graphs. This is the format in which SystemX can represent this
type of data.

A complete specification of a graphed trend includes the statistic of interest, the timing
of the data to be represented and the business unit(s) to which the statistic applies, each of
which will be represented by one line on the graph. In Figure 21 the statistic graphed is the
monthly total of unscheduled outages, the time period is the 12 months prior to and includ-
ing August, 1992, and the business units are the Eastern and Western Regions respectively.

33

4.0 System Use

The following example session shows what interaction with SystemX is like. User input is
in italics; system responses are in the same font as the body of the paper. The first two que-
ries are specified in natural language with tabular presentation of data. The third and
fourth requests are for line-graph presentation of data. The third request is for a canned
query (system reliability — another name for outages), whereas the subject of the fourth
query is specified in English. The other parameter values required for trending are set with
the help of a guided dialogue.

SX Main Menu

1 New Query
2 Display SQL
3 Save Last Response
4 Print Saved Responses
5 Display a Trend
6 Print Last Trend
7 Make a Comment
8 Stop
WHAT NEXT? >1

0

20

40

60

80

100

120

OUTAGES

Month

Unscheduled Outages

9/91 10 11 12 1/92 2 3 4 5 6 7 8

Western Canada
Eastern Canada

FIGURE 21. A trend graph.

34

New Query

Enter sentence to be parsed:
give me the basic service problems for vancouver in august

Parsing Completed.

give me the basic service problems for vancouver in august

Consulting Oracle for your data.

Date Call Type # Serv Calls KSubs

29-AUG-92 SUB OWNED EQP FAULTS 482 1.7
29-AUG-92 DROP PROBS. OUTSIDE 210 .7
29-AUG-92 SUB EDUCATION 141 .5
29-AUG-92 DISCONNECT IN ERROR 221 .8
29-AUG-92 NO FAULT FOUND 151 .5
29-AUG-92 SUB NOT HOME 223 .8
29-AUG-92 CANCELLED AT DOOR 3 0
29-AUG-92 REFERRED SYS PBLMS 377 1.3
29-AUG-92 ADDRESSABLES 23 .1
29-AUG-92 DROP PROBLEMS INSIDE 320 1.1
29-AUG-92 OTHER TRUCK ROLLS 33 .1

11 row(s) selected

1 New Query
2 Display SQL
3 Save Last Response
4 Print Saved Responses
5 Display a Trend
6 Print Last Trend
7 Make a Comment
8 Stop
WHAT NEXT? >calls received

Parsing Completed.

calls received

Consulting Oracle for your data.

Date Office Location # Calls Recd

31-AUG-92 BUSINESS VANCOUVER 86518

35

31-AUG-92 BUSINESS VICTORIA 13165
31-AUG-92 BUSINESS WESTERN CANADA 116105
31-AUG-92 REPAIR VANCOUVER 42949
31-AUG-92 REPAIR VICTORIA 3493
31-AUG-92 REPAIR ABBOTSFORD 1157
31-AUG-92 REPAIR CALGARY 5617
31-AUG-92 REPAIR WESTERN CANADA 53216

9 row(s) selected

1 New Query
2 Display SQL
3 Save Last Response
4 Print Saved Responses
5 Display a Trend
6 Print Last Trend
7 Make a Comment
8 Stop
WHAT NEXT? >5
Display a Trend

Trend Menu

1 # of C/S Representatives
2 Service Call Ratios
3 System Reliability
4 Subscribers per Employee
5 Subscribers per Km of Plant
6 Maintenance Calls
7 Repair Calls per TSR FTE
8 Repair Calls per TSR Hours
9 Specify Ad Hoc Trend
10 Cancel Trend Request
WHICH TREND? >3
System Reliability

Do you wish the current, 12 month trend for the Western divisions? (Y or N):y

Consulting Oracle for length of recorded history.

Consulting Oracle for range of valid y-axis values.

Consulting Oracle for data for VANCOUVER.

Consulting Oracle for data for VICTORIA.

Consulting Oracle for data for FRASER.

36

Consulting Oracle for data for SURREY.

Consulting Oracle for data for ABBOTSFORD.

Consulting Oracle for data for CALGARY.

Building the graph.

Hit return to continue

1 New Query
2 Display SQL
3 Save Last Response
4 Print Saved Responses
5 Display a Trend
6 Print Last Trend
7 Make a Comment
8 Stop
WHAT NEXT? >5
Display a Trend

Trend Menu

1 # of C/S Representatives
2 Service Call Ratios

37

3 System Reliability
4 Subscribers per Employee
5 Subscribers per Km of Plant
6 Maintenance Calls
7 Repair Calls per TSR FTE
8 Repair Calls per TSR Hours
9 Specify Ad Hoc Trend
10 Cancel Trend Request
WHICH TREND? >9
Specify an Ad Hoc Trend

Enter phrase describing data to be graphed:
(Return to cancel): the unscheduled outages

Parsing Completed.

Do you wish the current, 12 month trend for the Western divisions? (Y or N):n

Do you wish to specify a historical trend date? (Y or N): n

Consulting Oracle for length of trend period.

Do you wish to specify the trend duration (default 12 mos.)? (Y or N): n

Do you wish to specify the trend locations (default: Western divisions)? (Y or N): y

Retrieving Location table from Oracle.
LOCATION LOCATION_DESC

 6100 CANADA

2100 EASTERN CANADA
6300 WESTERN CANADA
2300 TORONTO
2310 GRAND RIVER
2320 LONDON
2330 PEEL
2340 PINE RIDGE

 2380 CORNWALL
 2390 NEWMARKET
 2700 VANCOUVER
 2710 VICTORIA
 2720 FRASER
 2730 SURREY
 2740 ABBOTSFORD
 2800 CALGARY
 2360 HAM/NIA
 2400 OTTAWA

38

18 row(s) selected

Please enter all location codes together (e.g. 2700 2710 2720) ->6300 2100

Consulting Oracle for range of valid y-axis values.

Consulting Oracle for data for WESTERN CANADA.

Consulting Oracle for data for EASTERN CANADA.

Building the graph.

Hit return to continue

5.0 The Evaluation

Given our view of design as an evolutionary process (see introduction to Section 2.0),
testing and evaluating SystemX was important. Although SystemX was used and tested in
the laboratory by its developers, this did not give us information about how the system
would perform with real users in their own work environment. Our interaction with Rogers
Cablesystems provided a test bed for gathering some real-world data on SystemX’s usabil-

0

20

40

60

80

100

120

OUTAGES

Month

Unscheduled Outages

9/91 10 11 12 1/92 2 3 4 5 6 7 8

Western Canada
Eastern Canada

39

ity.
User interface evaluation is currently an active area of research (see [1], [11], [14], and

[22], for example). The methods studied — heuristic evaluation, usability testing, guide-
lines, cognitive walkthroughs — most often occur at the sites in which the systems are
developed. When people are brought in to use a system, they are often given tasks to com-
plete rather than allowed free choice. These methods are valuable, but we wanted to look
at usability of SystemX in terms of the way people go about getting their own tasks done,
not ours.

5.1 Methods
 We prepared a field test which employed both formative and summative evaluation

methods. The goal of formative evaluation is to provide information about how to refine
and improve the design of a system. Summative evaluation provides information to assess
impact, usability, and effectiveness of the system. Therefore qualitative (formative) and
quantitative (summative) measures were required. Targeted areas of study were retention,
task completion, dialogue failure (due to errors, cancelled requests, queries that could not
be processed, and inappropriate responses), and user preferences and satisfaction. (Task is
used here to mean a process by which the user's goal or purpose in interacting with the
system is achieved.) We were also interested in user strategies for solving problems and
accomplishing goals.

Minimally intrusive evaluation methods were employed. These included logging, vid-
eotaping, on-line commenting, and questionnaire/interviewing. The user's interactions
with the system were automatically logged in a file and time-stamped. An on-line com-
menting facility was provided to accept and store typed, time-stamped comments. The
user was videotaped using the system twice during the field test, which lasted a month. A
follow-up interview was conducted, guided by a questionnaire.

The videotaped training session took place in our research lab and consisted of a five-
minute demonstration followed by a ninety-minute hands-on session, during which the
user talked freely about what he was doing and asked questions of the trainers. A few days
after the training session, the system was set up in his office and a 46-page user manual
provided. After ten days the user was again videotaped interacting with SystemX. He was
interviewed by two researchers at the conclusion of the test.

The videotaping was conducted using a two-camera set up. One camera was set to
capture the face of the user and the other the screen. A video tuner was used to inset the
output from one camera onto the output of the other camera. The final product was a sin-
gle tape of the interaction at the screen with the user's face inset in the upper right-hand
corner. This organization facilitates evaluation of interaction, especially at the level of
nonverbal cues from the user.

5.2 Results
We were interested in analysis of the data in terms of system performance and usabil-

ity. Under what circumstances does dialogue failure occur? Does the interface support
work at a task-oriented level? What linguistic elements currently outside the coverage of
the system are necessary for a usable interface? What extensions to the system would
users like to see? Although many user preferences may not be implementable at this time,

40

we are very interested in determining what those preferences are as they could help in
charting future research directions.

VANNA, a tool developed at the University of Toronto by Beverly Harrison and Ron
Baecker ([10]), was used to facilitate the laborious task of video tape annotation and anal-
ysis. The system allows evaluators to “code” (something like bookmarking and notemak-
ing) a video tape while the tape is playing and also allows “real time” coding while the
video is being shot.

 Evaluation was done at three levels: (1) patterns of use, (2) feasibility of user's “wish
list” for extensions to the system, and (3) implications of patterns of use on extension of
linguistic coverage and interface refinement and improvement. Patterns of use and the
user’s “wish list” are reported in Section 5.2.1and Section 5.2.2 respectively. Implications
of the results in terms of modifications and extensions to SystemX are presented in
Section 5.3. At the level of patterns of use, we examined counts of menu selections, inter-
actions not resulting in data, natural language use, patterns in queries, and task modes.

5.2.1 Patterns of Use
Menu Selection Counts. Table 3 shows the number of times each item in the main

menu was selected.

Over half of the menu selections were for graph presentation of data (229 out of 417),
a quarter for printouts of graphs (102 of 417), and a sixth for tabular data (66 of 417). Over
three quarters of the requests for data were for line-graph presentation of data (229 of
295).

Table 4 shows the number of times each item in the trend menu was selected.“Service
Call Ratios” (item 2) was the most frequently requested canned graph, but the most fre-
quently selected item by far was “Specify Ad Hoc Trend” (item 9). Over 60% of the
requests for graphs were ad hoc and partially specified in natural language.

Table 3: Count of main menu selections.

Menu Item # of Selections

1 New Query 66

2 Display SQL 7

3 Save Last Response 1

4 Print Saved Responses 1

5 Display a Trend 229

6 Print Last Trend 102

7 Make a Comment 2

8 Stop 9

Total 417

41

Interactions not Resulting in Data. Table 3 shows the number of interactions not
resulting in data. It should be noted that these counts include cancelled requests, failures,
and stop requests but do not include failures in which the data presented is not the data
requested. The grouping of interactions not resulting in data is convenient for doing
usability analysis.

 The first column of Table 3 contains the menu selections subcategorized for the type
of behaviour associated with the non-presentation of data. For example, “New Query”
requests which did not result in data were of four types: (1) those which could not be pro-
cessed, (2) those resulting in Lisp errors, (3) those resulting in SPE errors, and (4) those
cancelled with a Ctrl-C interrupt. There are multiple layers supporting SystemX, and
errors were categorized according to the layer in which an error occurred. Thus Lisp errors
are those occurring in the Lisp layer (SystemX is written in Lisp). SPE (Symbolic Pro-
gramming Environment) errors are those occurring in the windowing environment layer.

Table 4: Count of trend menu selections.

Menu Item # of Selections

1 # of C/S Representatives 2

2 Service Call Ratios 34

3 System Reliability 10

4 Subscribers per Employee 2

5 Subscribers per Km of Plant 12

6 Maintenance Calls 11

7 Repair Calls per TSR FTE 13

8 Repair Calls per TSR Hours 4

9 Specify Ad Hoc Trend 135

10 Cancel Trend Request 5

Total 228

Table 5: Count of interactions not resulting in data.

Behaviour # of Occurrences

1 New Query

– Couldn’t process 16

– Lisp error 2

– SPE error 1

– Ctrl-C 1

42

About 25% of the “New Query” requests could not be processed. However, slightly
less than half of those which could not be processed were most likely not intended as natu-
ral language requests for data. For example, two were empty queries, two consisted of “p,”
and one of “v1.” If we omit “unintentional” queries from the count, then about 14% of the
requests could not be processed. It is interesting to examine the change over time in the
ratio of queries that couldn’t be processed to “New Query” requests. The ratio for the first
two sessions of the field test was 1:3, whereas the ratio for the remaining sessions was
1:7.5. This decline suggests that the user learned some of the boundaries of the linguistic
coverage fairly quickly.

The SPE error occurred during a Ctrl-C interrupt attempt, but it is unclear from the log
and videotape just what went wrong. The user decided he wanted a graph of the data
instead of a table and tried to abort the query processing. Perhaps a fatal combination of
keys was accidentally hit in the abort attempt. One complicated query was interrupted
because the processing was taking too long.

The “Display SQL” request which did not result in data occurred because there had
been no previous “New Query.” Perhaps this selection was accidental. It is clear from the
videotape that some of the “Display SQL” requests were accidental. The user made the
selection from the main menu which he actually wanted from the trend menu.

About 38% of the total interactions not leading to data were the result of cancelled
requests and midsession stops. Analysis of these interactions will hopefully indicate some
ways to enhance the interface so that the appropriate steps for completing a task are more
obvious. However, some of the cancels may have occurred because the user changed his

2 Display SQL

– No data 1

3 Display a Trend

– Cancel from trend menu 5

– Cancel while specifying topic 20

– Lisp error 9

– ? 1

4 Print Last Trend

– Lisp error 6

– Default printer name problem 12

5 Stop

– Midsession 6

– End of session 3

Total 83

Table 5: Count of interactions not resulting in data.

Behaviour # of Occurrences

43

mind. It is also obvious from the videotape that some of the midsession stops were unin-
tentional — the saying of “oops” was a good indication.

The “?” under “Display a Trend” refers to an interaction in which we cannot determine
from the log what happened. Unfortunately this interaction occurred in a session which
was not videotaped. The user had selected “Display a Trend,” then “Specify Ad Hoc
Trend,” but the query was not entered.

The Lisp errors which occurred can be categorized into three types: (1) those associ-
ated with natural language input (“New Query” and “Specify Ad Hoc Trend” requests),
(2) those associated with graphing, and (3) those associated with printing graphs. We
thought we had trapped all Lisp errors, but that proved to be over-optimistic. It is interest-
ing to note that an apostrophe appeared as the last or second to last character in the input
of all natural language queries resulting in Lisp errors. The apostrophe is the key just to
the left of the <Return>, so it is possible that this key was accidentally hit in reaching for
the <Return> key. Keyboard design is an ergonomic problem, but the interface must deal
with the consequences. The graphing and printing Lisp errors (and default printer name
problems) have all since been analyzed, debugged, and fixed.

Natural Language Use. Sixty-eight percent of the requests for data (“New Query”
and “Display a Trend” selections) were specified in natural language (counted as “New
Query” from the main menu and “Specify Ad Hoc Trend” selections from the trend
menu). We also examined the language used in forming queries with certain questions in
mind. What words need to be added to the lexicon? What linguistic elements should be
added to extend coverage?

In terms of comparisons of natural language mode to other modes, it is interesting to
note that some of the canned trending queries were keyed in from “Specify Ad Hoc
Trend” even though they were available directly on the trend menu. The user stated in an
interview that he preferred keying to mousing because it is faster. He also stated that he
liked natural language for the flexibility it offered, especially for doing analysis of the
data. (He had previous experience with Rogers’ in-house executive information system in
which queries were restricted to items on a menu.)

Query Patterns. We had originally viewed interaction as independent query-response
pairs. This assumption was consistent with the way we used the system. However, our first
“real” user was motivated by an interest in the data as opposed to an interest in testing the
system, and used the system quite differently. The user likes to do what we have called
tweaking parameters. A graph is requested for a certain statistic, and subsequent queries
are for the same statistic but different parameter values. For example, a query for repair
calls is followed by queries for repair calls in other locations or time periods.

Task Modes. In observing the way the system was used from a task-oriented point of
view, two modes emerge: monitoring and analysis. In monitoring mode daily, weekly,
monthly, yearly statistics are tracked. If anything interesting or unexpected is observed, a
switch to analysis mode occurs. In analysis mode, queries are generated in an attempt to
find explanations for, or test hypotheses about, the cause of the unexpected trend. The user
said that this characterization was an accurate reflection of the way he works and used it as
a context for talking about enhancements to the system that he would like to see.

Other Strategies. The user developed an interesting strategy for on-line help. When
he wanted to review the names of subtypes of a general term, he asked for a tabular pre-
sentation of the general term. The system response would be a table of the breakdown of
the general term into its subtypes. So, for example, the user requested a tabular presenta-

44

tion of “trouble calls” and was presented with a table of the 12 subtypes of trouble call
(drop problems inside, drop problems outside, etc.). He then returned to trending and
requested a graph of whatever subtype he was interested in.The user was aware that this
information was in the User Manual, but he preferred “on-line help.” Needless to say, we
plan to feature on-line help in the next version of SystemX.

The user also had an interesting strategy for debugging. The user made a few attempts
to get data over a certain time period. The system responded with data, but the user said it
was not the data he wanted. He then requested the SQL code to see how the system had
interpreted his query. This was quite a sophisticated end user.

5.2.2 Users List of Extensions
A “wish list” of extensions the user would like to see was compiled in the post-test

interview. The list includes (1) exceptions reporting, (2) avoidance of re-keying whenever
possible, (3) smoothing of data, (4) extrapolation/forecasting, and (5) overlaying of
graphs. The user said that he would like to see the monitoring mode automated. The mon-
itoring subsystem would track data and report exceptions (data above or below certain
thresholds). Avoidance of rekeying would be aided by ellipsis and a dialogue box for
tweaking parameters. Smoothing of data refers to statistical manipulations to smooth out
the “jagged edge” of line graphs. Our user would like to see the system make projections
to aid in planning budget, staff requirements, etc. Overlaying of graphs refers to the ability
to hold one trend constant and overlay other trends on the same graph. This feature would
be useful for doing analysis, e.g., in determining whether the unscheduled outages trend
follows the same pattern as the scheduled outages trend. Alternatively, one graph could be
positioned above another on the screen. Both graphs would have the same scale for the x-
axis, but their y-axes could be different.

5.3 Conclusions Drawn from Evaluation
We feel very fortunate to have found people in the “real world” who are interested in

using SystemX. The valuable information we have gained as a result of the field test can-
not be obtained in the laboratory. In terms of the methods used, we found the videotapes
an important source of data to cross reference with the log files. There were several
instances in which the intention of the user could not be determined from the logs, but the
videotape provided an explanation. The videotapes were especially helpful in studying
strategies because the user talked about what he was doing.

However, care must be taken in interpreting results. Only one executive was involved
in the first field test. (Our proposal for two more field tests with a number of company
executives has been accepted.) How much of the sublanguage is user-specific, company-
specific, or industry-wide? How do other users work?

It should also be kept in mind that the goal of the field test was to obtain contextual
information to be used in the refinement of SystemX, not to test hypotheses about usability
of interfaces in general. So, for example, the user was asked to talk about what he was
doing throughout the videotaped sessions. It could be argued that this changed his behav-
iour, i.e., he would have worked differently if he had not been encouraged to describe his
intentions. However, we would have had to speculate a lot more about his intentions with-
out the videotapes.

45

Our experience has demonstrated that combining natural language input with other
input modalities can result in an effective interface for creating ad hoc graphs to display
data dynamically retrieved from databases. The marriage of natural language with other
input modalities forces an analysis of how a piece of a query is best specified: by natural
language, menu selection or other means.

One metric for determining the appropriate modality is that portions of the query
which refer to a small set of possible values are best handled by a similarly constrained
input modality such as menu selection. A possible example is the specification of the date.
A user interested in data selected over a coarse grained features such a month can select
the relevant value for a 12 item menu. This is not to say that input of this piece of the
query should be restricted to this modality. Phrases such as “in the last 2 months”,
“between April and May” and “after August” show that even when the set of possible val-
ues is constrained, members of the set may be combined into structures whose semantic
complexity taxes the menu selection modality.

The converse of this metric for determining the appropriate modality is that pieces of
the query whose possible values range over a large set are best specified by natural lan-
guage. Our experience with the customer service NLI indicates that the statistics which
summarize performance can only be comfortably specified in an ad hoc query by natural
language. The number of different statistics which may potentially be graphed can be
large. Furthermore, the trend to amassing ever larger amounts of on-line data is wide-
spread. Once the number of choices becomes significantly large, users of menu-based
interfaces or GUIs are forced to navigate through a structure of options, which slows
down the specification process and introduces complexity into the specification task. In
these situations, a natural language input facility offers a realistic alternative. It allows
users to say what it is they want using a short, relatively simple phrase rather than search
for it in the structure. An NLI capable of interpreting such phrases is likely to be easier to
construct and maintain. In addition, its response times will be short so that user frustration
will be minimized. Even when the phrase input is ambiguous, it is likely to restrict the
possible choices to a number which can be easily displayed so that the user can quickly
indicate the desired one.

A second metric is that structurally complex pieces of a query should have natural lan-
guage support. The examples given previously — e.g., “after August” — can be supported
by menu selection only by forcing the user to learn a syntax. The English version is more
natural.

The next level of evaluation concerns the implications of the patterns of use for refine-
ment of the system. How can the system be improved at the linguistic and interface levels
in light of what we have learned about the way the system is used in the real world? Some
patterns point to extensions to linguistic coverage, some to interface solutions, while oth-
ers are perhaps best handled at both levels.

Linguistic Coverage. At the linguistic level, natural language requests resulting in
couldn't process messages were examined for words to add the lexicon. Other extensions
to the lexicon include abbreviations and user-defined phrases for forming subsets of loca-
tions such as very large systems, large systems, medium systems, and small systems. The
extension of coverage to include limited forms of conjunction has been implemented to
allow queries for comparisons such as repair calls for Vancouver and Toronto. The exten-
sion to ellipsis supports interaction as discourse as opposed to a pattern of independent
query-response pairs.

46

Interface Level. Parameter tweaking could be supported at the linguistic level using
ellipsis, and at the interface level by providing a dialogue box in which default values for
parameters were preset. The user would then have the option to reset any or all of the
parameters without engaging in a lengthy dialogue with the system. In task-mode analysis,
the same statistics are examined regularly in monitoring mode, suggesting that these que-
ries might best be canned for quick access. Analysis mode is supported by ad hoc query-
ing, dynamic statistical manipulations, graph-overlaying, and the ability to “apply a trend.”

The user said that he used the graph presentation of data almost exclusively, so we are
looking at ways to refine that type of interaction. There are many specific recommenda-
tions for interface refinements based on our observations and on the user's suggestions. For
example, the default size for graphs could be bigger as the user resized most of the graphs.
He would also like to be able to loop within trending, i.e., get several graphs in sequence
without having to return to the main menu.

We are investigating the use of “general terms,” i.e., terms that refer to multiple tables,
multiple statistical attributes, multiple category attributes, multiple category attribute val-
ues, or even “multiple queries” as in the case of coordination. For example, “trouble calls”
has twelve subtypes (twelve values for the category attribute servcall_code) and two
statistical attributes: ratios and counts. What does the user want when general terms are
used? How should the data be presented within a table or graph? How can the interface be
designed so that system responses are more cooperative in these cases?

Modifications to SystemX. Several modifications were made to SystemX based on
analysis of field test results and interviews with the user. The user now loops within trend-
ing until “Return to Main Menu” is selected from the trend menu. The trend menu item
order has changed. “Specify an Ad Hoc Trend” is now first. “Print Last Trend” has been
moved from the main menu to the second item in the trend menu so that the user does not
have to return to the main menu to print a graph. The canned trends follow and have been
reordered according to user preferences. The user can enter natural language specification
of a trend by default without first selecting “Specify an Ad Hoc Trend” from the trend
menu (as with “New Query” in the main menu).

We have improved the messages presented when disambiguation is required. Ques-
tions for parameter values in trending are now consistently of the form, “Do you want the
default?” The title appearing on ad hoc graphs is now the natural language used to specify
the graph.

Several problems uncovered in the field test have been corrected such as a problem
with the graphic display of Abbotsford data, a problem with getting data about outage
minutes through trending, and some minor graphing and printing problems. Other errors
now caught include requesting for a one-month trend (which makes no sense for data com-
piled monthly), hitting <Return> without specifying location(s), and entering an unknown
printer name when seeking to print a trend.

Linguistic coverage has been extended in a few ways. Additions have been made to the
lexicon. An abbreviations recognition module has been created to support the use of cer-
tain abbreviations. Limited forms of ellipsis and coordination are now supported.

47

6.0 Discussion

The techniques for obtaining user feedback and system evaluation — interviews, user
manual, field trial and evaluation — have been little described in the NLI literature and
have caused us to evolve SystemX in ways we likely wouldn't have done ourselves.

Our management of natural language versus other input modes provides users with
flexibility. Users can make whole queries with the system's restricted sublanguage if they
so wish. In other queries, users can refer to database concepts in the English they use with
colleagues, while menus take care of notions which may have restricted content such as
time and location.

The use of statistical databases is common in the corporate world but remains rela-
tively rare among NLIs. HPSG has not been used in many NLP systems. Our context-
selection and priority mechanisms and syntactico-semantic categories (FTYPE and
DTYPE) for treating complex nominals are well suited to HPSG but may well be transfer-
rable to other language formalisms.

With a rapid increase in the number and size of databases, there is a pressing need for
systems that allow easy, direct access to and manipulation of information. NLIs are such
systems. The need for such systems clearly extends to people from many walks of life.
SystemX is an advanced prototype NLI that provides intuitive and rapid access to data and
relatively flexible presentation of output. New features are currently being added to the
system which will extend these capabilities even further. SystemX is evolving into a
sophisticated distributed information system that combines data access with data visual-
ization, knowledge discovery, data analysis, etc. and is capable of understanding natural
language input and producing natural language output.

7.0 Bibliography

[1]Booth, P. (1989). An Introduction to Human-Computer Interaction. Hillsdale, NJ:
Lawrence Erlbaum Associates.

[2]Bouma, Gosse, and Gertjan van Noord (1993). Head-Driven Parsing for Lexicalist
Grammars: Experimental Results. In Proceedings of the 6th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics (EACL-93), Utre-
cht, The Netherlands, pp. 71-80.

[3]Calder, Jo, Ewan Klein, and Henk Zeevat (1988) Unification Categorial Grammar: A
Concise Extendable Grammar for Natural Language Processing. In Proceedings of
the 12th International Conference on Computational Linguistics, Budapest, Hun-
gary, pp83-86.

[4]Capindale, Ruth A., and Robert G. Crawford (1990). Using a Natural Language Inter-
face with Casual Users. International Journal of Man-Machine Studies, 32, (3), pp.
341-361.

[5]Cercone, Nicholas J., and Gordon McCalla (1986). Accessing Knowledge through Nat-
ural Language. In Marshall C. Yovits (Ed.) Advances in Computers, Volume 25.
New York, NY: Academic Press, pp. 1-99.

[6]Cercone, Nicholas J., Paul McFetridge, Gary Hall, and Chris Groeneboer (1989). An

48

Unnatural Natural Language Interface. In Proceedings of the Combined Interna-
tional Conference of the 16th Conference of the ALLC & 9th Conference of the
ACH, Toronto, ON.

[7] Cercone, Nicholas J., Jiawei Han, Paul McFetridge, Fred Popowich, Dan C. Fass, Chris
Groeneboer, Gary Hall, and Yue Huang (to appear). SystemX and DBLEARN:
How to Get More from your Relational Database, Easily. Integrated Computer-Aid-
ed Engineering.

[8]Dasgupta, S. (1989). Structure of Design Processes. In Marshall C. Yovits (Ed.) Advanc-
es in Computers, Volume 28. San Diego, CA: Academic Press

[9] Hall, Gary, WoShun Luk, and Nicholas J. Cercone (1987). Disambiguating Queries Us-
ing Dependency Graphs. Technical report LCCR TR 87-07, Simon Fraser Univer-
sity, Burnaby, BC, Canada.

[10] Harrison, Beverley, and Ron Baecker (1992). Designing Video Annotation and Anal-
ysis Systems. In Proceedings Graphics Interface '92 (Vancouver, BC, May 11-15).
Toronto, ON: CIPS, pp. 157-166.

[11]Jeffries, R., Miller, J., Wharton, C., and K. Uyeda (1991). User Interface Evaluation in
the Real World: A Comparison of Four Techniques. In Proceedings CHI '91 (New
Orleans, LA, April 28 - May 2). New York, NY: ACM, pp. 119-124.

[12]Johnson, David E. (1984). Design of a Robust, Portable Natural Language Interface
Grammar. IBM Research Report RC10867, IBM Thomas J. Watson Research Cen-
ter, Yorktown Heights, NY.

[13]Kaplan, S. Jerrold (1984). Designing a Portable Natural Language Database Query
System. ACM Transactions on Database Systems, 9, (1), pp. 1-19.

[14] Karat, C-M., Campbell, R., and T. Fiegel (1992). Comparison of Empirical Testing
and Walkthrough Methods in User Interface Evaluation. In Proceedings CHI '92
(Monterey, CA, May 3-7). New York, NY: ACM, pp. 397-404.

[15] Kodric, Sandi, Fred Popowich, and Carl Vogel (1992). The HPSG-PL system: Version
1.2. Technical report CSS-IS TR 92-05, Centre for Systems Science, Simon Fraser
University, Burnaby, BC, Canada.

[16]McFetridge, Paul (1991). Processing English Database Queries with Head Driven
Phrase Structure Grammar. In Proceedings of the 2nd Japan-Australia Joint Sym-
posium on Natural Language Processing, Iizuka City, Japan.

[17] McFetridge, Paul, and Nicholas J. Cercone (1990). The Evolution of a Natural Lan-
guage Interface: Replacing a Parser. In Proceedings of Computational Intelligence
`90, Milan, Italy.

[18] McFetridge, Paul, Nicholas J. Cercone, WoShun Luk, and Gary Hall (1988a). System
X: A Portable Natural Language Interface. In Proceedings of the 7th Biennial Con-
ference of the Canadian Society for Computational Studies of Intelligence (CSCSI-
7), Edmonton, AB, Canada, pp. 30-38.

[19]McFetridge, Paul, Gary Hall, Nicholas J. Cercone, and WoShun Luk (1988b). Knowl-

49

edge Acquisition in System X: A Natural Language Interface to Relational Data-
bases. In Proceedings of International Computer Science Conference '88, The
Computer Society of the IEEE (Hong Kong Chapter), Hong Kong.

[20] McTear, Michael (1987). The Articulate Computer. Oxford, England: Basil Black-
well.

[21]Martin, Paul, Doug Appelt, Barbara Grosz, and Fernando Pereira (1985). TEAM: An
Experimental Transportable Natural Language Interface. Database Engineering, 8,
(3), pp. 10-22.

[22] Nielsen, J. (1992). Finding Usability Problems through Heuristic Evaluation. Proceed-
ings CHI '92 (Monterey, CA, May 3-7). New York, NY: ACM, pp. 373-380.

[23] Pollard, Carl, and Ivan Sag (1987). Information-Based Syntax and Semantics, Volume
1: Fundamentals. Centre for the Study of Language and Information, Stanford Uni-
versity, CA.

[24] Pollard, Carl, and Ivan Sag (forthcoming). Head-Driven Phrase Structure Grammar.
Centre for the Study of Language and Information, Stanford University, CA.

[25]Popowich, Fred, and Susan Kindersley (1991). Developing Lexical Unification-Based
Grammars. Actus du colloqueILN'91 Informatique & Langue Naturelle, LIANA,
Université de Nantes, France.

[26] Popowich, Fred, Paul McFetridge, Dan Fass, and Gary Hall. (1992). Processing Com-
plex Noun Phrases in a Natural Language Interface to a Statistical Database. In Pro-
ceedings of the 14th International Conference on Computational Linguistics (COL-
ING-92), Nantes, France, pp. 47-52.

[27]Popowich, Fred, and Carl Vogel (1991). A Logic-Based Implementation of Head-
Driven Phrase Structure Grammar. In Proceedings of the Third International Work-
shop on Natural Language Understanding and Logic Programming, Swedish Insti-
tute of Computer Science, Kista, Sweden, pp. 239-255.

[28] Russell, Graham, John Carroll, and Susan Warwick-Armstrong(1991). Multiple De-
fault Inheritance in a Unification-Based Lexicon. In Proceedings of the 29th Annual
Meeting of the Association for Computational Linguistics, University of California,
Berkeley, CA, pp. 215–221.

[29] Shieber, Stuart (1986). An Introduction to Unification-Based Approaches to Gram-
mar. Chicago, IL: The University of Chicago Press.

[30]Vogel, Carl, and Fred Popowich (1990). Head-Driven Phrase Structure Grammar as an
Inheritance Hierarchy. In W alter Daelemans and Gerald Gazdar (Eds.) Inheritance
in Natural Language Processing Workshop Proceedings, Institute for Language
Technology and Artificial Intelligence, Tilburg University, Holland, pp. 104-113.

[31] Vogel, Carl, Fred Popowich, and Nicholas J. Cercone (1990). Inheritance Reasoning
for Head-Driven Phrase Structure Grammar. Technical report CSS/LCCR TR 91-
07, Centre for Systems Science, Simon Fraser University, Burnaby, BC, Canada.

[32]Woods, William A., Ronald M. Kaplan, and Bonnie Nash-Webber (1972). The Lunar
Sciences Natural Language System: Final Report. Report No. 2378, Cambridge,

50

MA: Bolt, Beranek and Newman Inc.

[33]Zoeppritz, Magdalena (1983). Human Factors of a “Natural Language” Enduser Sys-
tem. In A. Blaser and M. Zoeppritz (Eds.) Enduser Systems and Their Human Fac-
tors, Proceedings of the Scientific Symposium conducted on the occasion of the 15th
Anniversary of the Science Center Heidelberg of IBM Germany, Heidelberg, March
18 1983. Berlin, Germany: Springer-Verlag, pp. 62-93.

51

Appendix A Original Rogers Corpus (90 sentences)

RCIOPS customer service domain (62 sentences)

• Manpower subdomain (1 sentence)

“I'd like to see the graph that shows me the number of customer service employees by
division.”

• Subscribers subdomain (3 sentences)

“I'd like to see the trend that shows me the number of subscribers per employee for
each division.”

“Show me the trend of the total base of subscribers for Fraser.”
“I'd like to see the trend that shows me the number of customers per km of plant.”

• Outages subdomain (18 sentences)

“Give me a list of all of the outages that affected more than 5000 customers and give
me that list by division.”

“For Vancouver, I want to see the items that affected more than 5000 customers, the
time that the outage occurred, duration of the outage, and reason for the outage.”

“Give me a list of the number of outages that affected between 1 and 5000 customers
by division.”

“Give me a list of the outages that affect less than 1000 customers.”
“Show me a summary of the number of outages we had by reason.”
“Give me the summary that summarizes the number of outages we had by reason.”
“Show me the trend for both scheduled outages and unscheduled outages.”
“Give me the system reliability performance.”
“How many major outages have we had in the last week.”
“Give me a list showing by location all of the outages, both scheduled and unsched-

uled, that have affected more than 5000 subscribers.”
“Compare system failures by minutes over the last three years for Vancouver.”
“Give me the Western Region Outage Log summary.”
“Show me the detail for those.”
“How many of the same type of problem have we had in the last year?”
“How many of these have we had in the last year?”
“Give me the detail of those 18 outages.”
“Show me the detail for the month of June for the less than 400 customers affected

outages.”
“Give me a list of outages where it took longer than X hours to rectify the problem.”

• Service calls subdomain (16 sentences)

“Give me the service call ratio.”
“Show me a list in descending order of drop problems by division.”
“Show me the 12 month trend for drop problems by division.”
“Compare the basic service problem statistics.”
“Compare the basic service problems per 1000 customers.”
“Compare the terminal equipment problems.”
“Compare the service call activity (by division) (per 1000 customers).”
“Compare the service call activity by location in ascending/descending order (by size

52

of division).”
“Compare the trouble call activity.”
“Give me the rolling year's summary for the Vancouver division.”
“Over the last year for Vancouver what has been the relative order of problems over the

last 12 months.”
“For Vancouver give me the major trouble call activity for each of the last 12 months.”
“For all divisions, show me the cancelled at door.”
“Show me by division the subscriber not home activity.”
“Show me the activity for subscriber not home.”
“For Vancouver show me the 12 month rolling history for subscriber not home.”

• Telephone subdomain (24 sentences)

“Give me the repair calls per TSR graph.”
“Give me the TSR costs per call graph (for the period ending October 1991).”
“I would like to see the information for Victoria for the month of October.”
“I would like to see the same thing for Calgary in June.”
“I would like to see costs and call volumes.”
“Give me the graph which compares calls received budget, calls received actual and

calls answered actual.”
“I'd like to see the % calls answered by division for the last 12 months.”
“I'd like to see the average service level by division.”
“Give me the telephone performance.”
“Give me a list of all the locations where calls abandoned is greater than 5% (for the

month of June).”
“Give me a list of all the locations where all trunks busy is greater than 2 hours (for the

month of June).”
“Give me a list of all the locations where average wait time is greater than X seconds

(for the month of June).”
“Give me a list of all the locations where average talk time is greater than X seconds

(for the month of June).”
“For each location compare the number of calls received versus the number of calls

budgeted.”
“What was the highest call type for Vancouver for June.”
“For June for Vancouver I want to see the weekly call volumes.”
“Show me day by day the call volumes per hour for June 1-7.”
 “Show me day by day for the week of June 1 calls offered, calls taken and% aban-

doned.”
“On June 1 8-9 AM show me the number of calls by type.”
“What % of phone calls were answered within 10 seconds.”
“Give me the % of the population who called last month.”
“Give me the Vancouver CSR performance for September.”
“How many full-time CSRs do we have.”
“How many phone calls were answered by one CSR in one hour?”
“Compare calls received against budget for the month of July.”

53

Other RCIOPS subdomains (28 sentences)

• Accounts receivable subdomain (18 sentences)

“How much has my allowance calculation gone up or down this week?”
“How many people paid on the due date (for our last billing (run))?”
“How many people paid fifteen days later?”
“How many people did we send out a reminder notice?”
“And how much of the reminder notice did they pay?”
“What % of quarterly payers pay when due within 15 days?”
“How many wait till 30 days?”
“How many wait till 60 days?”
“How many people paid through the mail and through the bank (for our last billing)?”
“How many people paid the full bill, how many people paid a partial bill, and how

many paid more than their bill?”
“How many people paid the full bill, how many paid partial, and how many paid

more?”
“For billing week ending Oct 28/90 how many subscribers paid before due date, how

many subscribers paid on due date, how many paid after 30 days or after 60 days?”
“After the second month from the BPX3 campaign, how many subscribers discon-

nected after 30 days, 60 days, 3 months, 6 months, 8 months?”
 “Of our hot reconnects, how many paid within 15 days, 30 days and after?”
 “From Sept 1 to Oct 31st how many new connections were completed and payment

was made within 10 days, 30 days, 60 days?”
 “From Sept 1 to Oct 31st how many cold reconnections were completed and payment

was made within 10 days, 30 days, 60 days?”
“Of our contract group how many of each group are monthly, bi-monthly, quarterly,

semi-annual, annual, and PAC?”
“From that contract group and pay method, what is their paying habits?”
• Work order subdomain (8 sentences)
“Show me for installation time-frames the divisions that don't meet the standard.”
“Show me the same information but quantified so as to show how they fail to meet the

standard.”
“Give me the summary by location for the month of June of the types and numbers of

work orders.”
“What is our average cost of reconnection work order for the year to date.”
“What is our average cost of reconnection work order in June.”
“For Vancouver for the last year, give me the total number of reconnection orders and

the average cost per order.”
“Compare the number of reconnect orders by status for all divisions.”
“For all divisions compare the number of reconnect orders by status.”
• Pay method subdomain (2 sentences)
“Show me the pay method for Vancouver for this year.”
“For the month of June show me the pay types by division.”

