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Recent coordinated efforts, in which numerous climate models have been run for a
common set of experiments, have produced large datasets of projections of future climate
for various scenarios. Those multi-model ensembles sample initial condition, parameter
as well as structural uncertainties in the model design, and they have prompted a variety
of approaches to quantify uncertainty in future climate in a probabilistic way. This paper
outlines the motivation for using multi-model ensembles, reviews the methodologies
published so far and compares their results for regional temperature projections. The
challenges in interpreting multi-model results, caused by the lack of verification of
climate projections, the problem of model dependence, bias and tuning as well as the
difficulty in making sense of an ‘ensemble of opportunity’, are discussed in detail.
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1. Introduction

(a ) Sources of model uncertainty

Predictions and projections of weather and climate from time scales of days to
centuries usually come from numerical models that resolve or parametrize the
relevant processes. Uncertainties in constructing and applying these models are
manifold, and are often grouped into initial condition, boundary condition,
parameter and structural uncertainties.

Initial condition uncertainty is most relevant for the shortest time scales.
Weather is chaotic, and predictions are sensitive to the value of observations
used to initialize numerical models (e.g. Palmer 2005). Long-term projections of
climate change are typically averaged over decades and often across several
ensemble members, and are thus largely insensitive to small variations in initial
conditions. Even when sequences of daily output from climate models are fed into
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impact models (e.g. ecosystem models or crop models), it is expected that the
choice of a specific model run within an ensemble generated by perturbed initial
conditions would not produce significantly different outcomes from an alternative
choice within the same ensemble, when summary statistics of climate-driven
results are computed. On the other hand, some climate models show multi-
decadal climate variability related to the behaviour of the Atlantic meridional
overturning circulation, and in those cases the ocean initial state can affect
projections over several decades (Bryan et al. 2006). Other components of the
climate system like soil properties or ice-sheet behaviour may contribute to these
long-memory effects, but for now these remain speculative.

Boundary condition uncertainty is introduced if datasets are used to replace
what in reality is an interactive part of the system, e.g. if sea surface temperature
and sea ice cover are prescribed in an atmosphere-only model, or if radiative
forcing (e.g. changes in solar insolation, changes in atmospheric concentrations of
greenhouse gases) is prescribed over time. With regard to prescribed
concentrations of greenhouse gases, the main source of uncertainty resides in
the assumptions over the future world economic and social development, leading
to alternative scenarios of greenhouse gas emissions whose relative likelihood
cannot be easily assessed.

Parameter uncertainties are discussed in detail in several other papers in this
issue. They stem from the fact that, mostly for computational constraints, small-
scale processes in all components of the climate system cannot be resolved
explicitly, and their effect on the large-scale climate response must be
parametrized with bulk formulae that depend on large-scale variables available
in the model. Parameter uncertainties can be explored and quantified by
perturbed physics ensembles (PPE), sets of simulations with a single model but
different choices for various parameters. Many of the attempts to quantify
climate change or climate model parameters in a probabilistic sense have taken
this approach (e.g. Andronova & Schlesinger 2001; Wigley & Raper 2001; Forest
et al. 2002, 2006; Knutti et al. 2002, 2003, 2005, 2006; Murphy et al. 2004;
Annan et al. 2005b; Frame et al. 2005; Meinshausen 2005; Piani et al. 2005;
Stainforth et al. 2005; Hegerl et al. 2006; Schneider von Deimling et al. 2006). As
it is also the case for multi-model ensembles in ways that we highlight in §3, the
PPE approach is limited in its ability to capture the full range of uncertainties in
the models’ representation of the true climate system, as there are many ways to
design a parametrization. While many processes behind the parametrization are
well understood, or observational or theoretical arguments exist, there are cases
where the evidence is rather circumstantial and values are often chosen simply
because they seem to work. In fact, an alternative approach to the interpretation
of parameter uncertainty is being developed at the European Center for Medium-
Range Weather Forecast where the idea of deterministic, if unknown, parameters
has been put aside and experiments with stochastic parametrization are
currently being run and evaluated (Palmer et al. 2005a).

In general, because the true climate system is highly complex, it remains
fundamentally impossible to describe all its processes in a climate model, no
matter how complex the model itself is. So, choices have to be made on what
processes to include, how to parametrize them and what pieces to neglect. On the
one hand, what is relevant to include in a model should depend on the question of
interest, and a wide spectrum of models does exist, each suitable for specific
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applications. But even for a given problem, the process of selecting pieces to
include in a model is at least partly subjective, based on expert knowledge and
experience. Any uncertainty that is introduced by choices in the model design,
i.e. going beyond changing values of particular parameters, is usually referred to
as structural uncertainty and would be hard to capture by changing parameters
within a single model, no matter how wide the range of parameters is chosen.
Similar arguments can be made for the choice of the type of grid, the resolution,
truncation or the type of numerical methods used to solve the equations (e.g.
whether spectral or finite volume methods are used in an atmospheric model).
These numerical aspects are also part of the model structure, but sometimes
considered separately from the physical aspects.

There is certainly tremendous value in exploring parametric uncertainties by
the PPE approach, and its success might be partly related to the simplicity of
generating those ensembles. Apart from the enormous computational capacity
required, this exploration of the parameter space is rather straightforward. These
ensembles offer insight into processes if a single parameter is perturbed at the
time. They have also been used successfully with multiple parameter
perturbations to generate probability density functions (PDFs) of transient
future warming, equilibrium climate sensitivity, the present-day magnitude of
the aerosol forcing and various other projections and model parameters by
constraining large ensembles with observations (see references above). However,
for the reasons discussed above, PPE experiments address only part of the
problem, even if an ever larger one, when the expensive choice is made to vary
whole parametrization schemes. Structural uncertainties need to be further
evaluated to understand and quantify the full uncertainty in climate change
projections, and to make sure that a result found by using a particular model is
not an artefact of its individual structure. Exploring this component of the
uncertainty, i.e. the errors in approximating the true system that are most
intrinsic to each model’s fundamental formulations and cannot be addressed by
varying its parametrizations, is the main motivation for looking at an ensemble
of different models.
(b ) The motivation for multi-model ensembles

We have argued that the quantification of all aspects of model uncertainty
requires multi-model ensembles, ideally as a complement to the exploration of
single-model uncertainties through PPE experiments. In addition, a variety of
applications, not only limited to the weather and climate prediction problems,
have demonstrated that combining models generally increases the skill,
reliability and consistency of model forecasts. Examples include model forecasts
in the sectors of public health (e.g. malaria; Thomson et al. 2006) and agriculture
(e.g. crop yield; Cantelaube & Terres 2005), where the combined information of
several models is reported to be superior to a single-model forecast.

Similarly, for weather- and climate-related applications, predictions for the
El Niño Southern Oscillation (ENSO) and seasonal forecasts from multi-model
ensembles are generally found to be better than single-model forecasts (e.g.
Palmer et al. 2005b). Multi-model ensembles are defined in these studies as a set of
model simulations from structurally different models, where one or more initial
condition ensembles are available from each model (if more initial conditions for
Phil. Trans. R. Soc. A (2007)
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each model are available the experiments are often said to make up a super-
ensemble). Seasonal forecasts show better skill, higher reliability and consistency
when several independent models are combined (e.g. Doblas-Reyes et al. 2003;
Yun et al. 2003). While for a single given diagnostic or variable, the multi-model
performance might not be significantly better than the single best model, studies
indicate that the improvements are more dramatic if an aggregated performance
measure over many diagnostics is considered. Thus, the largest benefit is seen in
‘the consistently better performance of the multi-model when considering all
aspects of the predictions’ (Hagedorn et al. 2005).

There are obviously different ways to combine models. In many cases,
Bayesian methods (e.g. Robertson et al. 2004) or weighted averages, where
weights are determined by using the historical relationship between forecasts and
observations (e.g. Krishnamurti et al. 2000), perform better than simple averages
where each model is weighted equally. Intuitively, it makes perfect sense to trust,
and thus weigh, the better models more. The difficulty, however, is in quantifying
model skill and deriving model weights accordingly. Controversial results exist
regarding the best way to combine model results, even in the case where skill or
performance can be calculated by comparing model predictions to observations.
The problem of constructing a weighted average for climate projection, where no
verification is available, is discussed in §3.

Improvements in the performance of a multi-model mean over single models
were also found when detecting and attributing greenhouse gas warming and
sulphate cooling patterns in the observed climate record (Gillett et al. 2002). An
equally weighted average of several coupled climate models is usually found to
agree better with observations than any single model (Lambert & Boer 2001).

Multi-model projections for long-term climate change were used in reports of
the Intergovernmental Panel on Climate Change (IPCC), where unweighted
multi-model means rather than individual model results were often presented as
best guess projections (IPCC 2001). Probabilistic projections based on multi-
model ensembles are rather new in the literature and are based on a variety of
statistical methods. These methods are discussed in detail in §2. The field is
rapidly evolving with the availability of larger ensembles of different models and
with very large PPE (of the order of a 100 000 simulations; e.g. Stainforth et al.
(2005)), and the development of new statistical approaches for their analysis.

In summary, simplifications, assumptions and choices of parametrizations
have to be made when constructing a model, and they inevitably lead to errors in
the model and the forecasts it produces. Improving forecasts and projections by
combining models rests on the assumption that if those choices are made
independently for each model, then the errors might at least partly cancel,
resulting in a multi-model average that is more skilful than its constitutive
terms. We will discuss the assumptions made in that line of argument, and
specifically their justification in climate projections in §3.
2. Existing published methods

In 1990, the Atmospheric Model Intercomparison Project (AMIP; Gates 1992)
developed a standard experimental protocol for atmospheric general circulation
models (GCMs). For the first time, a systematic framework in support of model
Phil. Trans. R. Soc. A (2007)
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diagnosis, validation and intercomparison was put forward and since then the
international community of climate modelling has participated and benefited
from it widely. The natural follow-up to AMIP was CMIP, the Coupled Model
Intercomparison Project (Meehl et al. 2000), whereby the output from coupled
atmosphere–ocean general circulation models (AOGCMs) became the object of
study. The first phase of CMIP was limited to control runs, while in a second
phase (CMIP2) idealized scenarios of global warming with atmospheric CO2

increasing at the rate of 1% per year were collected. More recently, in support of
the activities leading to the IPCC fourth assessment report (AR4), the archive of
coupled model output at the Program for Climate Model Diagnosis and
Intercomparison (PCMDI, http://www-pcmdi.llnl.gov/) was extended to
historical, SRES (Nakićenović et al. 2000) and commitment experiments,
where concentrations of greenhouse gases are kept constant after reaching
preset levels for the remaining length of a multi-century simulation. This ever-
increasing availability of model experiments under common scenarios, whose
output is standardized and to which access is facilitated, has naturally inspired
the analysis of multi-model ensembles since the beginning of 2000. In the third
assessment report of the IPCC (2001), many results were presented as multi-
model ensemble averages, accompanied by measures of inter-model variability,
most commonly inter-model standard deviations.

The article by Räisänen (1997) is probably the first one to explicitly advocate
the need of a quantitative model comparison and the importance of inter-model
agreement in assigning confidence to the forecasts of different models. But it was
only in Räisänen & Palmer (2001) that a probabilistic view of climate change
projections on the basis of multi-model experiments was first proposed. The
models considered are 17 AOGCMs participating in CMIP2. Based on these
models, probabilities of threshold events such as ‘the warming at the time of
doubled CO2 will be greater than 18C’ are computed as the fraction of models
that simulated such an event. These probabilities are computed at the grid point
level and also averaged over the entire model grid to obtain global mean
probabilities. The authors use cross-validation to test the skill of the forecast
derived for many different events and forecast periods. They find better skill for
temperature-related events than for precipitation-related events, and for events
defined close to the time of CO2 doubling than for events forecasted on shorter
time scales, when the signal of change is weaker. They also show how
probabilistic information may be used in a decision theory framework, where a
cost–benefit analysis of initiating some action may have different outcomes
depending on the probability distribution of the uncertain event from which
protection is sought. Naturally, in their final discussion, the authors highlight the
importance of adopting a probabilistic framework in climate change projections,
and wish for it to become an ‘established part of the analysis of ensemble
integrations of future climate’. Easier said than done. The same authors shortly
thereafter applied their procedure to forecasts of extreme events (Palmer &
Räisänen 2002), but the next significant step in the direction of probabilistic
projections was published more than a year and a half later (Giorgi & Mearns
2002, 2003).

Räisänen & Palmer (2001) assigned one vote to each AOGCM, when counting
frequencies of exceedance. The reliability ensemble average (REA) approach by
Giorgi & Mearns (2002) assumes a different perspective: not all GCMs are
Phil. Trans. R. Soc. A (2007)
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created equal. Model performance in replicating current climate and inter-model
agreement in the projections of future change should be of guidance in our
synthesis of multi-model projections: models with small bias and projections that
agree with the ensemble ‘consensus’ should be rewarded while models that
perform poorly in replicating observed climate and that appear as outliers should
be discounted. The REA method proposes an algorithmic estimation of model
weights through which ‘bias’ and ‘convergence’ criteria are for the first time
quantified. Defining the weights as

Ri Z ½ðRB;iÞm!ðRD;iÞn�½1=ðm!nÞ� Z
eT

jBT ;ij

� �m
!

eT

jDT ;ij

� �n� �½1=ðm!nÞ�
; ð2:1Þ

the weighted ensemble average is computed for separate subcontinental regions as

fDT Z

P
i RiDTiP

i Ri

; ð2:2Þ

where the individual model projections of change are indicated by DTi. The
weight for an individual model, Ri in equation (2.1), is defined as the product of
two terms (RB,i and RD,i), one inversely proportional to the absolute bias, BT,i ,
and the other to the absolute distance between the model projected change and
the final weighted ensemble average, DT,i. At the numerator, eT, a measure of
natural variability, ensures that models whose bias and deviation are not large
relative to natural fluctuations would not be unjustly discounted. The exponents
m and n can modulate the relative importance of the two terms in the weighted
average, but are set equal to 1. In a note following this article, Nychka & Tebaldi
(2003) showed that the REA estimate is in fact equivalent to a standard
statistical methodology for estimating a population’s central tendency in the
presence of outliers. It is well known that simple averages are sensitive to
‘extreme’ observations, while median values provide a more robust estimate. It

can be demonstrated that the final estimate fDT obtained as a weighted average
through the iterative reevaluation of the REA weights in equation (2.1) is in fact
the median of the sample of model projections, weighted by the part of equation
(2.1) that depends only on model bias.

In the second paper (Giorgi & Mearns 2003), the same REA weights are used
in the computation of frequencies of threshold exceedances as in Räisänen &
Palmer (2001) and Palmer & Räisänen (2002) to derive probabilistic projections
of various events (e.g. warming in a region exceeding 48C or precipitation change
exceeding 20% of current average). Thus, differential weighting of GCMs is
applied for the first time in a probabilistic setting. Beside the innovative step of
considering the two criteria in the formal combination of the ensemble
projections, the regional nature of the analysis positioned these papers to be
more directly relevant for impact studies and decision-making applications.

The REA approach motivated the work by Tebaldi et al. (2004, 2005) and
Smith et al. (submitted). Their Bayesian analysis treats the unknown quantities
of interest (current and future climate signals, model reliabilities) as random
variables, for which reference prior distributions (Berger 1993) are chosen.
Assumptions on the statistical distribution of the data (consisting of models’
output and observations) as a function of the unknown parameters determine the
likelihood, which is combined through Bayes theorem with the prior distributions
to derive posterior distributions of all the uncertain quantities of interest, among
Phil. Trans. R. Soc. A (2007)
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which is the climate change signal. Simple Gaussian (normal) assumptions are
stipulated for the current (Xi’s) and future (Yi’s) model projections, centred
around the true climate signals, m and n, respectively, with model-specific
variances. The choice of ‘reference’ priors ensures that the data have maximum
relevance in shaping the posterior distributions. It is in this strictly mathematical
sense that the nature of the prior can be called ‘uninformative’, since, as has
widely been discussed and acknowledged, there exists no choice of prior that can
be defended as absolutely neutral. Thus, it is hypothesized that

XiwNðm; lK1
i Þ;

YiwNðn; ðqliÞK1Þ;
ð2:3Þ

where the notation N(m, lK1) stands for a Gaussian distribution with mean m and
variance 1/l. Similarly, the observed current climate, X0, is modelled as a
realization from a Gaussian distribution centred around the same current climate
signal m, and whose variance is estimated through the observed record

X0wNðm; lK1
0 Þ: ð2:4Þ

Through Bayes theorem, evaluated numerically by Markov Chain Monte
Carlo methods, a posterior distribution for the true climate signals is derived,
and straightforwardly translated into a probability distribution for climate
change, defined as n–m. As a consequence of the distributional assumptions, the
criteria of bias and convergence, in an analytical form similar to the form of the
REA weights, shape the posterior distributions. In fact, the form of the posterior
means for m and n is approximately

~mZ

P
i liXið ÞP
i lið Þ ; ð2:5Þ

and

~nZ

P
i liYiP
i li

� �
; ð2:6Þ

where the model-specific li’s look very much like the REA weights, being
estimated approximately aseli Z aC1

bC 1
2 ½ðXiK ~mÞ2 CqðYiK ~nÞ2�

: ð2:7Þ

The first term of the denominator in equation (2.7) is a measure of bias, being the
distance of the present climate average as simulated by model i from the optimal
estimate, ~m, of current climate. The second term is a measure of convergence,
computing a distance between the model’s future projection from the future
climate signal’s posterior mean ð~nÞ. The terms a and b are prior parameters
chosen as orders of magnitude smaller with respect to the remaining terms, so
that they do not have significant impact on the final estimates. As in Giorgi &
Mearns (2002), outliers receive less weight here as well. Sharp criticisms have
been raised against the validity of the convergence criterion when analysing a set
of models that are by design ‘best guesses’ rather than attempting to sample a
wide range of uncertainties, and whose agreement may be a consequence of
inbreeding rather than reciprocal validation of individual tendencies. In
particular, it has been often argued that there may exist common weaknesses
in the representation of certain processes in a majority of models, and
Phil. Trans. R. Soc. A (2007)
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consequently outliers may not appear at random. In response to these concerns,
the authors proposed a variant of the analysis in which the outliers are not
heavily penalized (Tebaldi et al. 2004). This is achieved by a priori assigning a
large probability to the models being less ‘precise’ in their future projections
compared with their skill in current projections. In the statistical model, this
formally translates into a prior distribution for the parameter q in the second line
of equation (2.3) that is concentrated on values less than 1. Note also that the
weighting of the original REA approach (Giorgi & Mearns 2002, 2003) is
undergoing revision to incorporate different measures of model performance
besides bias, and to eliminate the convergence criterion following the same strain
of criticisms (F. Giorgi 2006, personal communication).

Another related consequence of assuming independence among GCM
projections (which is implicitly or explicitly the case for all the methods
described so far) is that any statistical analysis will produce increasingly more
precise estimates (e.g. narrower posterior distributions of climate change signals)
as the number of models in the ensemble increases. In fact, the paper by Lopez
et al. (2006) which compares the probabilistic estimates derived from Tebaldi
et al. (2004, 2005) with those derived using optimal fingerprinting methodology,
as in Allen et al. (2000), shows the results of a numerical simulation with an
increasing number of GCMs. The width of the posterior distribution of
temperature change (computed as a global average in this exercise) is shown
to have a strong inverse relation to the number of GCMs. It is however arguable
that models do not provide perfectly independent pieces of evidence, as we
discuss more at length in §3. Thus, a statistical analysis that by construction
relies on inter-model agreement and discounts outliers, concentrating the range
of uncertainty around the larger cluster(s) of models, can be overly optimistic
regarding the precision of its final estimates. Nonetheless, an implicit reliance on
model agreement can be detected in many published analyses. For example, in
the writing of the IPCC third assessment report (IPCC 2001), two models were
discarded altogether because they produced extreme estimates of warming, i.e.
showed very large climate sensitivity. Note also that despite the ever-recurrent
comment about the need of accounting for model dependence, no formal
approach at quantifying this dependence has been worked out yet. A distance in
model space is definitely a difficult concept to formalize. A further series of
developments in the statistical treatment of Tebaldi et al. (2004, 2005) is
presented by Smith et al. (submitted). There, an additional level of statistical
modelling is introduced in order to avoid unbalanced attribution of weight to the
different AOGCMs. Also, a multivariate treatment of a set of regions over the
globe is proposed instead of the separate estimation of the signals of climate
change in specific regions one by one. Through this approach, the reliability
of each model is evaluated across a wider set of performances (across a large set
of regions rather than over a single region), thus reducing the chance of
concentrating the weight in the final estimates over a restricted set of AOGCMs.
A cross-validation step is added to the analysis as a way of verifying the
statistical modelling assumptions and results.

The regional nature of the analyses by Giorgi & Mearns (2002, 2003), Tebaldi
et al. (2004, 2005) and Smith et al. (submitted) was adopted by Greene et al. (2006).
These authors chose to combinemulti-model ensembles by amethod similar to what
is employed for seasonal and interannual forecasting. A Bayesian hierarchical linear
Phil. Trans. R. Soc. A (2007)
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model is fitted to an observational dataset of regionally aggregated seasonal and
annual temperatures, where the predictors are similarly aggregated GCM
projections. The true observed temperature trends (Yiks) for region i and time k
are modelled as centred around a mean value, with a Gaussian error

YikwNðmik; s
2
kÞ; ð2:8Þ

and the mean value is modelled as a linear combination of the GCMs’ output

mik Zb0k C
X
j

bjkXijk; ð2:9Þ

whereXijk indicates the simulated temperature in region i at time k by model j. This
is similar to performing model calibration, but the method adds several relevant
features like error terms that are regionally differentiated and linear coefficients that
are derived from a parent multivariate normal distribution (common to all regions)
where the variance–covariance structure across models accounts for inter-model
correlation. The calibrated ensemble is used to derive climate change projections,
and given the random nature of the coefficients (in a Bayesian setting), their
posterior distribution translates into a probability distribution for the climate
change projection. The main assumption governing this approach is that of
stationarity of the relation between observed and simulated trends, estimated in the
training period of the twentieth century and applied to future simulations. In fact,
this strong assumption causes obvious differences between the simple average
projections from the GCMs and the projections synthesized from the calibrated
ensemble, inmany cases resulting in distributions over a range of values significantly
shifted, more often towards lower values. The possible uncertainty in the forcings
applied to the twentieth century simulations and not accounted for by the method
may also be contributing to the final estimates of the calibration coefficients.

Furrer et al. (in press) tackled the modelling of GCM output at the grid point
scale, rather than at the aggregated level of large subcontinental regions. The
central idea of the approach is to model each GCM field of temperature or
precipitation change as a random process on the sphere. The field is made of two
additive components: a large-scale climate signal and a small-scale error field,
representing both model bias and internal variability. Thus, modelling the field
of change, denoted as Di for the ith GCM, and defined simply as the difference,
grid point by grid point, of the future mean projection minus the current
mean projections

Di ZYiKXi; ð2:10Þ
the statistical model states that

Di ZMqi Cei: ð2:11Þ
The large-scale signal, represented as the first additive term of equation (2.11), is
modelled as a linear combination of a set of truncated basis functions, filling the
columns of the matrix M. The basis functions are spherical harmonics, apt to
represent spatial structure on a sphere, plus a set of additional vectors modelling
the expected geographical patterns like, for example, a land/ocean mask.
Observations are also used as one of the additional columns in the linear
combination, in the hope that they will help explain some of the effect of the
physical processes that create climate on Earth but are not easily represented
through statistical modelling. There is no direct use of either a bias or
convergence criterion in the spatial modelling of this study. The coefficients of
Phil. Trans. R. Soc. A (2007)
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the linear combination are the components of the vector qi. The small-scale
residual field ei is modelled as a realization of a stationary Gaussian random field
of mean zero. Both the linear coefficients qi and the scale parameters of the
covariance function in the Gaussian process ei are model-specific, a way to
account for the different GCMs’ characteristics in replicating the true climate
signal. The vectors qi of linear coefficients are samples from a distribution whose
mean are the ‘true’ coefficients. The goal of the Bayesian analysis is to estimate
the posterior distribution of the true coefficients. Once recombined with the basis
functions, the posterior distribution for the true coefficients will translate into a
multidimensional probability distribution of the large-scale signal of climate
change, jointly quantifying the uncertainty over the global grid. Complex
regional statements of climate change, then, may be easily derived. This remains
the only published method to represent the uncertainty over a global map, using
spatial statistics to model geographical patterns of varying degrees of smoothness
(e.g. temperature change fields rather than precipitation change fields) as a
function of the spatial correlation between locations.

Based on the latest set of model experiments contributing to the AR4 of the
IPCC, PDFs produced by the methods in Tebaldi et al. (2004), Greene et al. (2006)
and Furrer et al. (in press) are compared in figure 1. The PDFs represent
projections of temperature change in winter (DJF) and summer (JJA) for the end
of the twenty-first century under the SRES A1B scenario. Also shown is the
empirical distribution of the GCM projections, in the form of a shaded histogram.
We choose four representative regions from the 22 regions first adopted by
Giorgi & Francisco (2000), which have become a standard choice for regional
climate change analysis on the basis of GCMs since then. Specifically, we choose
Western North America (WNA), the Mediterranean basin (MED), Northern Asia
(NAS) and Southeast Asia (SEA). Note that the empirical distribution is what
determines the results of the method by Räisänen & Palmer (2001) and Palmer &
Räisänen (2002). It is immediately noticeable how the different methods produce
different curves. Tebaldi et al. (2004) and Furrer et al. (in press) produce similar
curves, particularly with regard to the location of their central mass, but also for
most cases similar in width. They are on average narrower than the empirical
distribution of the GCM projections, as one would expect as a consequence of the
scaling of the uncertainty range with the number of data points (20 in this example,
as many as there are GCMs contributing to this particular experiment). The
method byGreene et al. (2006) produces wider PDFs, probably as a consequence of
the large degree of uncertainty in the estimation of the calibration coefficients.
Also, some of the regions show the tendency of the latter method to produce curves
whosemass is shifted with respect to the empirical distribution. This effect is due to
the calibration coefficients being significantly different from those of a simple
average, a consequence of the need of significantly ‘reshaping’ the modelled trends
to match more closely with the observed ones. Tables 1 and 2 compare
the probability of exceedance of several thresholds of temperature for the same
regions, seasons and scenario as figure 1. These cumulative probabilities are
derived from the empirical distributions of the GCMs projections and from the
REA method of Giorgi & Mearns (2003). When they differ, the distributions
derived by the REAmethod tend to concentrate the mass of the probability among
a few GCM projections within the entire ensemble, thus producing steeper
cumulative distributions.
Phil. Trans. R. Soc. A (2007)
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Figure 1. Comparison of PDFs derived by the three methods of Tebaldi et al. (2004), Greene et al.
(2006) and Furrer et al. (in press) for four regions (Western North America, MEDiterranean basin,
Northern ASia and Southeast Asia), two seasons (DJF and JJA) and one scenario (SRES A1B).
Also represented is the histogram of the GCM projections. The temperature changes are computed
as the difference between two 20-year averages, 2080–2099 versus 1980–1999. (a) WNA: A1B, DJF;
(b) WNA: A1B, JJA; (c) MED: A1B, DJF; (d ) MED: A1B, JJA; (e) NAS: A1B, DJF; ( f ) NAS:
A1B, JJA; (g) SEA: A1B, DJF; (h) SEA: A1B, JJA.
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A number of other papers have approached the problem of deriving regional
probabilistic projections of climate change on the basis of multi-model ensembles.
They are characterized by a less general approach, compared with the methods
described so far, having been tailored to specific regions and impact studies. We
choose three of them as good representatives of more focused studies. Benestad
(2004) used statistical downscaling applied to a multi-model ensemble in order
to derive probabilistic scenarios at a finer resolution for northern Europe.
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Table 1. Probabilities of exceeding a series of increasing thresholds, expressed in 8C, in the
temperature change projections of an ensemble of GCMs, unweighted (labelled as ‘empirical’ in the
rows of the table) and weighted by the REA method of Giorgi & Mearns (2003). (Results for
temperature change in boreal winter (DJF) under SRES A1B. The temperature changes are
computed as the difference between two 20-year averages, 2080–2099 versus 1980–1999.)

DTO08C DTO18C DTO28C DTO38C DTO48C DTO58C

WNA empirical 1.00 1.00 0.95 0.76 0.38 0.14
WNA REA 1.00 1.00 1.00 0.95 0.11 0.01
MED empirical 1.00 1.00 0.86 0.33 0.05 0.00
MED REA 1.00 1.00 1.00 0.01 0.00 0.00
NAS empirical 1.00 1.00 1.00 0.95 0.81 0.67
NAS REA 1.00 1.00 1.00 1.00 1.00 1.00
SEA empirical 1.00 1.00 0.71 0.10 0.00 0.00
SEA REA 1.00 1.00 0.81 0.06 0.00 0.00

Table 2. Probabilities of exceeding a series of increasing thresholds, expressed in 8C, in the
temperature change projections of an ensemble of GCMs, unweighted (labelled as ‘empirical’ in the
rows of the table) and weighted by the REA method of Giorgi & Mearns (2003). (Results for
temperature change in boreal summer (JJA) under SRES A1B. The temperature changes are
computed as the difference between two 20-year averages, 2080–2099 versus 1980–1999.)

DTO08C DTO18C DTO28C DTO38C DTO48C DTO58C

WNA empirical 1.00 1.00 1.00 0.67 0.38 0.19
WNA REA 1.00 1.00 1.00 1.00 1.00 0.01
MED empirical 1.00 1.00 1.00 0.81 0.48 0.14
MED REA 1.00 1.00 1.00 1.00 1.00 0.00
NAS empirical 1.00 1.00 0.95 0.43 0.33 0.24
NAS REA 1.00 1.00 0.98 0.33 0.19 0.15
SEA empirical 1.00 1.00 0.71 0.14 0.00 0.00
SEA REA 1.00 1.00 1.00 0.00 0.00 0.00
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The approach is the same as in Räisänen & Palmer (2001) and Palmer &
Räisänen (2002) but is applied to trends downscaled from GCM output by a
simple delta method, where regional anomalies simulated by GCMs are applied
to observed local trends at a fine network of stations. Luo et al. (2005) were
interested in the impacts of climate change over the wheat production of a small
region of South Australia. Using output from GCMs and regional climate models
(RCMs) run under different scenarios, they derive a regression relation between
local change in temperature and precipitation and global average warming on a
monthly basis. In turn, a relation between global warming and CO2

concentrations and climate sensitivity is also derived. By sampling in a Monte
Carlo framework along three different dimensions of uncertainty (climate
scenarios, climate sensitivity and local change projections, the latter exemplified
by different GCM-specific patterns), histograms of temperature and precipitation
change in the regions are constructed and the results fed to a weather generator
and used as input in crop models. Dettinger (2005) proposes resampling a given
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ensemble of trajectories of temperature or precipitation change, in the specific
case for a small region corresponding to a watershed in California. In this way,
the sample size is augmented and more robust estimates of the PDF of change
are derived directly from the new larger ensemble. The resampling method
decomposes the original ensemble into principal components (after a standard-
ization procedure to preserve mean and standard deviation of the ensemble as a
whole) and resamples the PCA results to form new members that, when added to
the ensemble, preserve its spectral characteristics.
3. Challenges

There are a number of issues that need to be considered when constructing and
interpreting multi-model climate projections, whether in the form of probability
distributions of climate change or simple averages and measures of variability
across models. Most of these difficulties, discussed in the following sections, are
recognized by the climate modelling community, but are still poorly understood
and quantified. Therefore, references and suggestions on how to tackle, let alone
resolve, these issues are inevitably sparse. We choose to group the problems into
four categories, namely, metrics of model validation, model dependence,
experimental design of multi-model experiments (or lack of ) and model tuning,
although the different issues are partly related.

(a ) Metrics, skill and the lack of verification

The predictive skill of a model is usually measured by comparing the predicted
outcome with the observed one. Note that any forecast produced in the form of a
confidence interval, or as a probability distribution, cannot be verified or disproved
by a single observation or realization since there is always a non-zero probability for
a single realization to be within or outside the forecast range just by chance. Skill
and reliability are assessedby repeatedly comparingmany independent realizations
of the true system with the model predictions through some metric that quantifies
agreement between model forecasts and observations (e.g. rank histograms). For
projections of future climate change over decades and longer, there is no verification
period, and in a strict sense therewill never be any, even ifwewait for a century.The
reason is that the emission scenario assumed as a boundary condition is very likely
not followed in detail, so the observations from the single climate realizations will
never be fully compatible with the boundary conditions and scenario assumptions
made by the models. And even if the scenario were to be followed, waiting decades
for a single verification dataset is clearly not an effective verification strategy. This
might soundobvious, but it is important tonote that climate projections, decades or
longer in the future by definition, cannot be validated directly through observed
changes. Our confidence in climatemodelsmust therefore come from other sources.

The judgement of whether a climate model is skilful or not does not come from
its prediction of the future, but from its ability to replicate the mean climatic
conditions, climate variability and transient changes for which we have
observations, and from its ability to simulate well-understood climate processes.
For example, climate models are evaluated on how well they simulate the
present-day mean climate (e.g. atmospheric temperature, precipitation, pressure,
vertical profiles, ocean temperature and salinity, ocean circulation, sea ice
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distributions, vegetation, etc.), the seasonal cycle and climate variability on
various time scales (e.g. the North Atlantic oscillation, ENSO, etc.). Their
response to specified forcing is compared to the observed warming over the
industrial period. They are evaluated against proxy data from past climate
states, e.g. the Last Glacial Maximum, the Mid-Holocene, the last Interglacial
period, or even further back in time (e.g. Kiehl & Shields 2005; Otto-Bliesner
et al. 2006a,b). Further, individual processes in the model are studied in detail
and evaluated against both theory and observations. While all those activities
have helped in improving the models, and have greatly increased our confidence
that the models capture the most relevant processes, simulating the past and
present correctly does not guarantee that the models will be correct in the future.
In other words, while there is a lot of circumstantial evidence for the models to be
trusted for the future, there is no definitive proof for model skill in projecting
future climate. In fact, most models agree reasonably well with observations of
the present-day mean climate and simulate a realistic warming over the
twentieth century (of course, the specific performance depends on each model/
metric combination), yet their predictions diverge substantially for the twenty-
first century, even when forced with the same boundary conditions.

The difficulty in quantifying model performance for future climate can be
circumvented using two approaches. The first approach may be to ignore model
performance altogether. As criticizable as this should be, it is in fact the case that
multi-model simple averages are widely used, for example in the IPCC (2001)
report. While this is likely to improve the best guess projections because model
errors tend to cancel, it hardly makes optimal use of the information available.
Intuitively, and using an extreme example, a model that performs well in every
case where it has been compared to observations is more likely to be correct in
the future than the one that is inconsistent with even the basic observed features
of the climate. In an alternative approach, therefore, models can be combined in
a weighted average (or subsets of models can be used, which means giving zero
weight to some), where the model weight is determined by some measure of
model performance. The crux lies in defining a metric for model performance
which might be relevant for predicting future climate, but must be based on
observations from the past or present. There is no unique way of doing that.

Tebaldi et al. (2005), for example, following the approach set forward by
Giorgi & Mearns (2002), based the model weights on how well the model
simulates the climatological mean temperature in the region of interest.
Alternatively, one could argue that since the model prediction is a trend
(warming over a certain time period), one should evaluate the models by how
well they simulate the observed warming trend over the last decades, or on both
the mean and trend, as done by Greene et al. (2006). Spatial patterns may be
considered, thus favouring an approach similar to Furrer et al. (in press) which
considers the full global fields instead of isolated regions, although that particular
approach does not explicitly weight models. When precipitation is the focus, one
should probably also look at temperature and dynamics of the atmosphere, since
they both affect precipitation. Murphy et al. (2004) defined a climate prediction
index that includes a large number of fields against which the model versions are
compared. However, it is unclear which fields are important for a model to give a
credible climate change response, it is unclear how the different diagnostics
should be weighted, and it is probable that some of the diagnostics are dependent
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on each other, and thus redundant to some degree. No single climate model is
best with respect to all variables (IPCC 2001; Lambert & Boer 2001), thus the
weight given to each model in a probabilistic projection will always depend on
the metric used to define model performance. For a given metric and for present-
day climate, weighted averages of models were shown to compare better to
observations than to raw averages with equal weights (Min & Hense 2006). It is
unlikely, however, that the weights for future projections should be the same as
those found to be optimal for present-day climate. The choice of a metric to
weight models for future projections is therefore pragmatic, subjective and often
also influenced by what can be observed with sufficient accuracy. It may depend
on the prediction of interest, but even for a given prediction (e.g. future
precipitation change in a certain region), there is no consensus of what the best
metric is to quantify model performance. Arguably, then, the best approaches
should attempt to use multiple diagnostics and metrics of performance,
combining them in ways that account for possible correlations within the set,
for uncertainty in observations and for inherent limitations in the model’s ability
of representing the quantities of interest. A novel approach that addresses many
of these issues has recently been proposed by Goldstein & Rougier (2004) and
Rougier (in press).

Whatever the approach taken in building multi-model probabilistic pro-
jections, the same issues of verifiability apply to their results as to the individual
models. Some of the statistical analyses presented in §2 have adopted a ‘perfect
model’ approach to verification, i.e. a cross-validation approach in statistical
speech, to verify—at a minimum—that each model projection is itself compatible
with the final synthesis product, when the latter is built on the basis of the
remaining models only.
(b ) Model dependence and mean bias

The idea that the performance of a forecast can be improved by averaging or
combining results from multiple models is based on the fundamental assumption
that errors tend to cancel if the models are independent, and thus uncertainty
should decrease as the number of models increases. Most studies explicitly or
implicitly assume this model independence in their statistical analyses, while many
others intuitivelymakeuse of it in that they aremore confident about a result that is
common to many models than about results only seen in a single model.

Indeed, models are developed relatively independently by different groups
around the world. However, models are also similar in many respects. All models
have similar resolution, and thus can or cannot resolve the same processes. It is
probable that the errors introduced into the models by the parametrization or
the unresolved processes are similar across models. Models often use the same
theoretical arguments for their parametrizations. For example, isopycnal
diffusion (diffusion along surfaces of constant densities; Redi 1982) and the
Gent/McWilliams eddy mixing parametrization (an advective term mimicking
the mixing effect of ocean eddies; Gent & McWilliams 1990; Gent et al. 1995) are
used in many ocean models. Also, the observations to tune the parametrizations
or to evaluate models are often the same for most models. Any deficiency in the
structure of the parametrization or biases in the observations used to constrain
the free parameters will be persistent across many models. Furthermore, models
Phil. Trans. R. Soc. A (2007)



C. Tebaldi and R. Knutti2068
share grids and numerical methods to solve the equations, and each method is
known to have some deficiencies. In some cases, in particular when successful
models are open to the community, entire model components are borrowed by
other models to reduce the effort of developing an alternative module.

For the most recent coordinated modelling effort archived at PCMDI, several
groups submitted more than one model or model version, e.g. one model was run
at two different resolutions but the same physics; one ocean was coupled to two
different atmospheres. In those cases, the models are clearly not independent,
and their biases against observations are probably highly correlated. Sharing
components and knowledge is not bad a priori, but it will result in persistent
biases in a multi-model mean, whether weighted or not.

If the models were independent, like independent realizations of a random
process, the uncertainty around the estimate of the process mean should approach
zero as increasingly more models are averaged. Although model performance does
improve when combining models, this behaviour does not seem to be entirely
defensible, at least not for very large number of models. Some errors in a model
might be random, but others are the result of our limited understanding of the
processes and our ability to parametrize them efficiently in coarse resolution
models. Neither of those is improved by adding more and more models of the same
quality. There are known problems common to many models. For example, most
models tend to overestimate short-wave and underestimate long-wave surface
fluxes (Wild 2005;Wild et al. 2006), and it is unclear whether those biases affect the
projections of future climate in a persistent way. The random errors will tend to
cancel, while the ones common to many models will not. There might also be
‘unknown unknowns’, i.e. misrepresentations of processes, missing processes or
uncertainties in processes that we are not aware of.

In sum, the current generation of models cannot be considered to be fully
independent, nor are the models distributed around the true representation of
the climate system. Therefore, in the absence of new knowledge about the
processes and a substantial increase in computational resources to correctly
resolve or parametrize them, our confidence in models should not increase
unboundedly, and thus our uncertainty should not continue to decrease when the
number of models increases.
(c ) The ensemble of opportunity

Multi-model datasets are often described as ‘ensembles of opportunity’. This
refers to how they are assembled, namely by asking for model results from
anyone who is willing to contribute. Various non-scientific aspects determine the
size and composition of such ensembles, e.g. whether modelling groups are
interested at all and whether they have funding and computational resources to
do the requested simulations.

The implication of how these multi-model ensembles are created is that the
sampling is neither systematic nor random. The distribution of the models is thus
completely arbitrary, and might be different in a subsequent ensemble, therefore
changing the result even if the knowledge about the climate system has not
changed. Even if we were to solve the problem of weighting the individual
members, the posterior would still depend on the prior distribution which is
determined by human decisions and cannot be interpreted in a scientific sense.
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Another aspect of the same problem is that the models are not designed to
span the full range of behaviour or uncertainty that is known to exist. This is not
surprising, since all models are tuned and improved to match the observations as
closely as possible. Once scientists are satisfied with a model, they rarely go back
and see whether there might be another set of model parameters that gives a
similar fit to observations but shows a different projection for the future. In other
words, the process of building and improving a model is usually a process of
convergence, where subsequent versions of a model build on previous versions,
and parameters are only changed if there is an obvious need to do so. With a few
exceptions of large PPE (Murphy et al. 2004; Stainforth et al. 2005; Collins et al.
2006) based on AOGCMs and simpler models (e.g. Wigley & Raper 2001; Forest
et al. 2002; Knutti et al. 2002), the range of parameters and possible responses is
not normally explored in GCMs by varying parameters simultaneously, mostly
due to computational limitations.

Maybe the most prominent example is climate sensitivity, the equilibrium
global mean surface temperature increase for a doubling of the atmospheric
carbon dioxide concentration. Climate sensitivity in GCMs is usually not tuned,
but the result of a sum of mostly atmospheric feedback processes. The range of
climate sensitivities covered by the GCMs is approximately 2.0–4.58C. A number
of recent studies have attempted to quantify the range of climate sensitivity
based on simpler models and perturbed physics GCM ensembles, and using
observations of the radiative balance, observed warming of the surface and
ocean, radiative forcing and of proxy evidence or the last millennium and Last
Glacial Maximum. Most of the results indicate a substantial probability that
climate sensitivity might be higher than 4.58C, maybe up to 68C or more
(Andronova & Schlesinger 2001; Forest et al. 2002, 2006; Knutti et al. 2002;
Murphy et al. 2004; Frame et al. 2005; Piani et al. 2005; Stainforth et al. 2005;
Hegerl et al. 2006). Yet no GCM in the multi-model ensembles comes even close
to sampling such high values of climate sensitivity (although a small fraction of
the models in PPE experiments do sample those high values). Therefore, it is
probable that the range covered by the multi-model ensemble covers a minimum
rather than the full range of uncertainty.
(d ) Model tuning and evaluation

Models can be evaluated using a variety of observations, from station data,
satellite data, proxy data to reanalysis data, and more. Does a model that agrees
well with observations more likely capture the important processes of the system
it attempts to describe? This is certainly true to a large degree. However, in some
cases, model agreement with observations can be improved by changing
parameters that are unrelated to the problem. For example, if a model
overestimates the temperature in a certain region, this could be improved by
slightly changing the albedo of the dominant plant type in that region, although
the problem might actually be related to an incorrect atmospheric circulation
pattern. There is a danger of getting the right result for the wrong reason by
tuning the wrong end of the model. Another example is aerosol forcing, where the
spread of the total aerosol forcing across models is relatively small compared with
the spread of the individual components of the forcing, indicating that different
models get a similar response but for different reasons. Similarly, warming over
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the twentieth century is consistent with observations in many models. But it
depends on the transient ocean heat uptake, climate sensitivity and the radiative
forcing combined, and any bias in one of those quantities can be compensated by
changes in the others (Knutti et al. 2002). Therefore, agreement with
observations can be spurious, and can arise from a cancelling of errors, not
necessarily guaranteeing that processes are correctly simulated.

The problem gets worse when the datasets which are used to tune the model
are identical to those used later to evaluate the performance of the model and
derive model weights in multi-model averages. Model evaluation should ideally
be performed on independent datasets. Otherwise, the possibility of circular
reasoning arises: a model can agree well with observations simply because the
very same observations have been used to derive or tune the model.

Model tuning is often a subjective process. Annan et al. (2005a,b) have shown
that the ensemble Kalman filter (Evensen 1993, 1994) can be a very efficient
alternative to create a perturbed set of model versions consistent with observations,
and that such an approach could be more objective. However, they note the
problem of imperfectly known model error, i.e. the fact that the model is to some
degree inadequate such that there is no perfect agreement with observations no
matter how carefully the model is tuned. Also, it remains to be shown that an
automated tuning approach can produce model solutions substantially better than
those produced by experts making choice on the parameters based on their
experience and understanding of the processes. Despite those difficulties, objective
tuning methods, data assimilation and model evaluation on seasonal forecasts or in
the context of weather prediction provide promising areas of research that have
barely been explored with climate models so far.

Observations are also uncertain. Besides the fact that sparsity or poor quality
of observations may be of obstacle in model tuning, or obfuscate model
shortcomings, biased observations would cause all models to be biased in the
same way, and any attempt of combing models will suffer from the same
problem. While some datasets (e.g. station data) are independent of the models,
the problem gets worse when reanalysis data are used. Certain types of reanalysis
data are not constrained by observations and are purely model-derived, and the
reanalysis models used for that are based on similar numerical methods,
assumptions and parametrizations as the ones of the climate models, in which the
datasets are used for evaluation afterwards (this problem is especially relevant
for variables related to the hydrological cycle). Fortuitous agreement of climate
models with reanalysis products might therefore result to some degree from
common biases in both climate models and reanalysis models.

Finally, some models are known to ignore certain processes. For example, in
the most recent collection of simulations of the twentieth century, several models
do not include variations in the solar and volcanic forcing, and therefore should
not reproduce the observed warming trends and patterns correctly. Nevertheless,
they are usually evaluated against the observed trends.

In sum, although model agreement with observations is very valuable in
improving the model, and is a necessary condition for a model to be trusted, it
does not definitely prove that the model is right for the right reason. There are
well-known examples where errors in different components of a single model tend
to cancel. The use of the same datasets for tuning and model evaluation raises
the question of circular reasoning.
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4. Future directions and conclusions

Probabilistic climate projections from multi-model ensembles is a relatively
recent topic in climate research, and it has gained a lot of momentum over the
last few years. PDFs of projected changes attempt to represent the uncertainties
that are embodied by a spectrum of modelling choices, and by the inherent
imperfection of each and every one of them. These quantitative representations
of the uncertainty are apt at being propagated into impact models (e.g.
economic, crop or water resource management models) and can be used to study
strategies for decision making under uncertainty. However, the list of open
questions and issues associated with the interpretation of multi-model ensembles
for climate projections as well as with statistical methodological aspects is still
long, and compels us to look at the results of the analyses described in §2 as
experimental and still lacking robustness, as evident by the significant
disagreement among the PDFs produced by the different approaches.

In §3 we highlighted what we consider the main challenges to combining
multi-model ensembles: the choice of metrics and diagnostics of performance,
especially as they suggest model reliability for future projections; inter-model
dependencies and common biases that should be quantified to avoid ‘double
counting’ and over-optimistic reliance on consensus estimates; and representa-
tiveness of the sample of models with regard to common fundamental
uncertainties. We think future analyses and better understanding of these
ensembles will have to achieve fundamental progress in these areas.

Looking at the future availability of model output from concerted
international efforts, we see new challenges appearing, when some climate
models start to include new components of the Earth system that are not
standard across the larger model population. Extensions beyond the traditional
AOGCM framework of ocean, atmosphere, sea ice and land include, for example,
biogeochemical cycles (e.g. carbon and nitrogen cycles), ecosystem models,
atmospheric chemistry, extensions of the atmospheric model beyond the
troposphere and stratosphere, urban models, embedding RCMs into global
models, and more. While the latest multi-model ensemble created for the IPCC
AR4 was relatively homogeneous in the sense that all models included just the
four main components, it is unclear whether this will be the case in future
coordinated model efforts. If future sets of models are less uniform and coherent
in their structure and in the processes they include or neglect, their
interpretation and combination will be more difficult. On the other hand, they
will probably sample a wider range of structural uncertainties in that case, and
will be reducing the concern about common biases.

For the decision-making process, it is important to know whether uncertainty
in the evolution of future climate will remain at a similar level or whether it will
be reduced substantially in the next decades. This uncertainty depends on the
uncertainties in the emission scenarios, caused by uncertainties in social,
economical and technical development, as well as uncertainties in climate model
projections for a given scenario, caused by our incomplete understanding of the
climate system and the ability to describe it in a reasonably efficient
computational model. While a probabilistic picture of climate model uncertainty
is evolving (as demonstrated by many papers in this issue), emission scenarios so
far do not have likelihoods attached to them (Schneider 2001). For these reasons,
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it seems unlikely at this stage that projection uncertainty will decrease
significantly in the very near future even on a global scale (Stott &
Kettleborough 2002), and this is even more true for local projections. In
principle, increased computational capacities combined with accurate long-term
observations have the potential to substantially reduce the climate model
uncertainties on the long run. However, even if the perfect climate model did
exist, any projection is always conditional on the scenario considered. Given the
often non-rational and unpredictable behaviour of humans, their decisions and
the difficulty in describing human behaviour and economics in models, the
perfect climate forecast (as opposed to a projection that is conditional on the
scenario) is a goal that will probably be impossible due to the uncertainties in
emission scenarios and the feedback loops involving the agents that the forecast
is directed towards. Nonetheless, a comprehensive picture of the uncertainty in
climate projections remains a key goal to aim for, and we should welcome the
opportunity of taking advantage of independent resources and minds at work on
it, by intelligently combining their—always different to some degree—results.
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