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The need for dimensionality reduction 

  Content-Based Ranking: 
  Ranking matching documents in a search  engine 

according to their relevance to the user 
  Presenting documents as vectors in the words 

space  - ‘bag of words’ representation 
  It is a sparse representation, V>>|D| 

  A need to define conceptual closeness  
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Feature Vector representation 
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From: Modeling the Internet and 
the Web: Probabilistic methods and 
Algorithms, Pierre Baldi, Paolo 
Frasconi, Padhraic Smyth  



What is so special about text? 

  No obvious relation between features 
  High dimensionality, (often larger vocabulary, 

V, than the number of features!) 
  Importance of speed 
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Classification: assigning words to topics 
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Different models for data: 

Discrete  Classifier, 
modeling the boundaries 
between different classes of 
the data  

Prediction of 
Categorical 
output e.g., SVM 

Density Estimator: modeling the 
distribution of the data points 
themselves  

Generative 
Models e.g. NB 



A Spatial Representation: Latent Semantic 
Analysis (Landauer & Dumais, 1997) 
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The Naïve Bayes classifier 

  Assumes that each of the data points is 
distributed independently: 

  Results in a trivial learning algorithm 
  Usually does not suffer from overfitting 
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Naïve Bayes classifier: words and topics 
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A set of labeled documents is given: 
 {Cd,wd: d=1,…,D} 

Note: classes are mutually exclusive  
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Simple model for topics 

Given the topic 
words are 
independent 

 
 
 
The probability for 

a word, w, given 
a topic, z, is θwz 
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P({w,C}| θ) = ΠdP(Cd)ΠndP(wnd|Cd,θ) 



Learning model parameters 

Estimating θ from the probability: 
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Under the normalization constraint, one finds 

Here            is the probability for word w given topic j and                is the 
number of times the word w is assigned to topic j    
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Example of making use of the results: predicting 
the topic of a new document 
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Naïve Bayes, multinomial: 

C 

W 

Nd D 

θ 

P({w,C}) = ∫d θ ΠdP(Cd)ΠndP(wnd|Cd,θ)P(θ) 

Generative parameters 
θwj = P(ω|c=j)  

  Must satisfy Σwθwj = 1, therefore the 
integration is over the simplex, (space of 
vectors with non-negative elements that 
sum up to 1)  

  Might have Dirichlet prior, α 

α 
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Inferring model parameters 

Making use of the MAP: 
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One can find the distribution of θ by sampling 
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This is a point estimation of the PDF, provides the mean 
of the posterior PDF under some conditions provides the full PDF 
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LDA: A generative model for topics 

  A model that assigns Dirichlet priors to 
multinomial distributions: Latent Dirichlet 
Allocation 

  Assumes that a document is a mixture of 
topics 
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LDA: Inference 

Fixing the parameters α, β (assuming 
uniformity) and inferring the distribution of the 
latent variables:  

  Variational inference (Blei et al) 
  Gibbs sampling (Griffiths & Steyvers) 
  Expectation propagation (Minka) 
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Sampling in the LDA model 

The update rule for fixed α,β and integrating out θ 

Provides point estimates to θ and distributions of 
the latent variables, z.   
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The author-topic model 

  Automatically extract topical content of documents 

  Learn association of topics to authors of documents 

  Propose new efficient probabilistic topic model:  
the author-topic model 
 

  Some queries that model should be able to answer:  
  What topics does author X work on? 
  Which authors work on topic X?  
  What are interesting temporal patterns in topics? 
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The model assumptions 

  Each author is associated with a topics mixture 

  Each document is a mixture of topics   

  With multiple authors, the document will be a 
mixture of the topics mixtures of the coauthors 

  Each word in a text is generated from one topic and 
one author  
(potentially different for each word) 

Michal Rosen-Zvi, UCI 2004 



The generative process 

  Let’s assume authors A1 and 
A2 collaborate and produce a 
paper 
  A1 has multinomial topic 

distribution θ1	


  A2 has multinomial topic 

distribution θ2 
  For each word in the paper: 

1.  Sample an author x 
(uniformly) from A1, A2 

2.  Sample a topic z from a θX 
3.  Sample a word w from a 

multinomial topic distribution 

Michal Rosen-Zvi, UCI 2004 



Inference in the author topic model 

  Estimate x and z by Gibbs sampling  
(assignments of each word to an author and topic)  

  Estimation is efficient: linear in data size 
 

  Infer from each sample using point estimations: 
  Author-Topic distributions (Θ)	



  Topic-Word distributions   (Φ)	



  View results at the author-topic model website [off-line] 
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Naïve Bayes: author model 

  Observed variables: 
authors and words on 
the document 

  Latent variables: 
concrete authors that 
generated each word 

  The probability for a 
word given an author 
is multinomial with 
Dirichlet prior 
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Results: Perplexity 

Lower perplexity indicates a better 
generalization performance 
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Results: Perplexity (cont.) 
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Perplexity and Ranking results 
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Perplexity and Ranking results (cont) 
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Can the model 
predict the 
correct 
author? 


