
Morgan Kaufmann Publishers 14 October, 2014

Chapter 3 — Arithmetic for Computers 1

Chapter 3
Arithmetic for Computers

Chapter 3 — Arithmetic for Computers — 2

Arithmetic for Computers

 Operations on integers
 Addition and subtraction

 Multiplication and division

 Dealing with overflow

 Floating-point real numbers
 Representation and operations

§3.1 Introduction

Morgan Kaufmann Publishers 14 October, 2014

Chapter 3 — Arithmetic for Computers 2

Chapter 3 — Arithmetic for Computers — 3

Integer Addition

 Example: 7 + 6
§3.2 A

ddition and S
ubtraction

 Overflow if result out of range
 Adding +ve and –ve operands, no overflow

 Adding two +ve operands
 Overflow if result sign is 1

 Adding two –ve operands
 Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 4

Integer Subtraction

 Add negation of second operand

 Example: 7 – 6 = 7 + (–6)
+7: 0000 0000 … 0000 0111
–6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

 Overflow if result out of range
 Subtracting two +ve or two –ve operands, no overflow

 Subtracting +ve from –ve operand
 Overflow if result sign is 0

 Subtracting –ve from +ve operand
 Overflow if result sign is 1

0000000110
1111111001

1
1111111010

Morgan Kaufmann Publishers 14 October, 2014

Chapter 3 — Arithmetic for Computers 3

Chapter 3 — Arithmetic for Computers — 5

Dealing with Overflow

 Some languages (e.g., C) ignore overflow
 Use MIPS addu, addui, subu instructions

 Other languages (e.g., Ada, Fortran)
require raising an exception
 Use MIPS add, addi, sub instructions
 On overflow, invoke exception handler

 Save PC in exception program counter (EPC)
register

 Jump to predefined handler address
 mfc0 (move from coprocessor reg) instruction can

retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers — 6

Arithmetic for Multimedia

 Graphics and media processing operates
on vectors of 8-bit and 16-bit data
 Use 64-bit adder, with partitioned carry chain

 Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors

 SIMD (single-instruction, multiple-data)

 Saturating operations
 On overflow, result is largest representable

value
 c.f. 2s-complement modulo arithmetic

 E.g., clipping in audio, saturation in video

Morgan Kaufmann Publishers 14 October, 2014

Chapter 3 — Arithmetic for Computers 4

Chapter 3 — Arithmetic for Computers — 7

Multiplication

 Start with long-multiplication approach

1000
× 1001

1000
0000
0000
1000
1001000

Length of product is
the sum of operand
lengths

multiplicand

multiplier

product

§3.3 M
ultiplication

Chapter 3 — Arithmetic for Computers — 8

Multiplication Hardware

Initially 0

Morgan Kaufmann Publishers 14 October, 2014

Chapter 3 — Arithmetic for Computers 5

Chapter 3 — Arithmetic for Computers — 11

MIPS Multiplication

 Two 32-bit registers for product
 HI: most-significant 32 bits

 LO: least-significant 32-bits

 Instructions
 mult rs, rt / multu rs, rt

 64-bit product in HI/LO

 mfhi rd / mflo rd

 Move from HI/LO to rd

 Can test HI value to see if product overflows 32 bits

 mul rd, rs, rt

 Least-significant 32 bits of product –> rd

Chapter 3 — Arithmetic for Computers — 16

MIPS Division

 Use HI/LO registers for result
 HI: 32-bit remainder

 LO: 32-bit quotient

 Instructions
 div rs, rt / divu rs, rt

 No overflow or divide-by-0 checking
 Software must perform checks if required

 Use mfhi, mflo to access result

Morgan Kaufmann Publishers 14 October, 2014

Chapter 3 — Arithmetic for Computers 6

Chapter 3 — Arithmetic for Computers — 17

Floating Point

 Representation for non-integral numbers
 Including very small and very large numbers

 Like scientific notation
 –2.34 × 1056

 +0.002 × 10–4

 +987.02 × 109

 In binary
 ±1.xxxxxxx2 × 2yyyy

 Types float and double in C

normalized

not normalized

§3.5 F
loating P

oint

Chapter 3 — Arithmetic for Computers — 18

Floating Point Standard

 Defined by IEEE Std 754-1985

 Developed in response to divergence of
representations
 Portability issues for scientific code

 Now almost universally adopted

 Two representations
 Single precision (32-bit)

 Double precision (64-bit)

Morgan Kaufmann Publishers 14 October, 2014

Chapter 3 — Arithmetic for Computers 7

Chapter 3 — Arithmetic for Computers — 19

IEEE Floating-Point Format

 S: sign bit (0 non-negative, 1 negative)
 Normalize significand: 1.0 ≤ |significand| < 2.0

 Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

 Significand is Fraction with the “1.” restored

 Exponent: excess representation: actual exponent + Bias
 Ensures exponent is unsigned
 Single: Bias = 127; Double: Bias = 1203

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x

Chapter 3 — Arithmetic for Computers — 20

Single-Precision Range

 Exponents 00000000 and 11111111 reserved

 Smallest value
 Exponent: 00000001
 actual exponent = 1 – 127 = –126

 Fraction: 000…00 significand = 1.0

 ±1.0 × 2–126 ≈ ±1.2 × 10–38

 Largest value
 exponent: 11111110
 actual exponent = 254 – 127 = +127

 Fraction: 111…11 significand ≈ 2.0

 ±2.0 × 2+127 ≈ ±3.4 × 10+38

Morgan Kaufmann Publishers 14 October, 2014

Chapter 3 — Arithmetic for Computers 8

Chapter 3 — Arithmetic for Computers — 21

Double-Precision Range

 Exponents 0000…00 and 1111…11 reserved

 Smallest value
 Exponent: 00000000001
 actual exponent = 1 – 1023 = –1022

 Fraction: 000…00 significand = 1.0

 ±1.0 × 2–1022 ≈ ±2.2 × 10–308

 Largest value
 Exponent: 11111111110
 actual exponent = 2046 – 1023 = +1023

 Fraction: 111…11 significand ≈ 2.0

 ±2.0 × 2+1023 ≈ ±1.8 × 10+308

Chapter 3 — Arithmetic for Computers — 22

Floating-Point Precision

 Relative precision
 all fraction bits are significant

 Single: approx 2–23

 Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal
digits of precision

 Double: approx 2–52

 Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal
digits of precision

Morgan Kaufmann Publishers 14 October, 2014

Chapter 3 — Arithmetic for Computers 9

Chapter 3 — Arithmetic for Computers — 23

Floating-Point Example

 Represent –0.75
 –0.75 = (–1)1 × 1.12 × 2–1

 S = 1

 Fraction = 1000…002

 Exponent = –1 + Bias
 Single: –1 + 127 = 126 = 011111102

 Double: –1 + 1023 = 1022 = 011111111102

 Single: 1011111101000…00

 Double: 1011111111101000…00

Chapter 3 — Arithmetic for Computers — 24

Floating-Point Example

 What number is represented by the single-
precision float
11000000101000…00
 S = 1
 Fraction = 01000…002

 Fxponent = 100000012 = 129

 x = (–1)1 × (1 + 012) × 2(129 – 127)

= (–1) × 1.25 × 22

= –5.0

Morgan Kaufmann Publishers 14 October, 2014

Chapter 3 — Arithmetic for Computers 10

Chapter 3 — Arithmetic for Computers — 25

Denormal Numbers

 Exponent = 000...0 hidden bit is 0

 Smaller than normal numbers
 allow for gradual underflow, with

diminishing precision

 Denormal with fraction = 000...0

Two representations
of 0.0!

BiasS 2Fraction)(01)(x

0.0 BiasS 20)(01)(x

Chapter 3 — Arithmetic for Computers — 26

Infinities and NaNs

 Exponent = 111...1, Fraction = 000...0
 ±Infinity

 Can be used in subsequent calculations,
avoiding need for overflow check

 Exponent = 111...1, Fraction ≠ 000...0
 Not-a-Number (NaN)

 Indicates illegal or undefined result
 e.g., 0.0 / 0.0

 Can be used in subsequent calculations

Morgan Kaufmann Publishers 14 October, 2014

Chapter 3 — Arithmetic for Computers 11

Chapter 3 — Arithmetic for Computers — 27

Floating-Point Addition
 Consider a 4-digit decimal example

 9.999 × 101 + 1.610 × 10–1

 1. Align decimal points
 Shift number with smaller exponent
 9.999 × 101 + 0.016 × 101

 2. Add significands
 9.999 × 101 + 0.016 × 101 = 10.015 × 101

 3. Normalize result & check for over/underflow
 1.0015 × 102

 4. Round and renormalize if necessary
 1.002 × 102

Chapter 3 — Arithmetic for Computers — 28

Floating-Point Addition
 Now consider a 4-digit binary example

 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)

 1. Align binary points
 Shift number with smaller exponent
 1.0002 × 2–1 + –0.1112 × 2–1

 2. Add significands
 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

 3. Normalize result & check for over/underflow
 1.0002 × 2–4, with no over/underflow

 4. Round and renormalize if necessary
 1.0002 × 2–4 (no change) = 0.0625

Morgan Kaufmann Publishers 14 October, 2014

Chapter 3 — Arithmetic for Computers 12

Chapter 3 — Arithmetic for Computers — 29

FP Adder Hardware

 Much more complex than integer adder

 Doing it in one clock cycle would take too
long
 Much longer than integer operations

 Slower clock would penalize all instructions

 FP adder usually takes several cycles
 Can be pipelined

Chapter 3 — Arithmetic for Computers — 30

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Morgan Kaufmann Publishers 14 October, 2014

Chapter 3 — Arithmetic for Computers 13

Chapter 3 — Arithmetic for Computers — 31

Floating-Point Multiplication
 Consider a 4-digit decimal example

 1.110 × 1010 × 9.200 × 10–5

 1. Add exponents
 For biased exponents, subtract bias from sum
 New exponent = 10 + –5 = 5

 2. Multiply significands
 1.110 × 9.200 = 10.212 10.212 × 105

 3. Normalize result & check for over/underflow
 1.0212 × 106

 4. Round and renormalize if necessary
 1.021 × 106

 5. Determine sign of result from signs of operands
 +1.021 × 106

Chapter 3 — Arithmetic for Computers — 32

Floating-Point Multiplication
 Now consider a 4-digit binary example

 1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375)

 1. Add exponents
 Unbiased: –1 + –2 = –3
 Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127

 2. Multiply significands
 1.0002 × 1.1102 = 1.1102 1.1102 × 2–3

 3. Normalize result & check for over/underflow
 1.1102 × 2–3 (no change) with no over/underflow

 4. Round and renormalize if necessary
 1.1102 × 2–3 (no change)

 5. Determine sign: +ve × –ve –ve
 –1.1102 × 2–3 = –0.21875

