Morgan Kaufmann Publishers 14 October, 2014

e COMPUTER ORGANIZATION AND DESIGN /¢

The Hardware/Software Interface

| Chapter 3

| Arithmetic for Computers

| Arithmetic for Computers

| Operations on integers
Addition and subtraction
Multiplication and division
Dealing with overflow
Floating-point real numbers
Representation and operations

Chapter 3 — Arithmetic for Computers — 2

Chapter 3 — Arithmetic for Computers 1

Morgan Kaufmann Publishers

| Integer Addition

Example: 7 + 6

SiHHNN

Overflow if result out of range
Adding +ve and —ve operands, no overflow

Adding two +ve operands
Overflow if result sign is 1

Adding two —ve operands
Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 3

| Integer Subtraction

| Add negation of second operand
0000000110

Example: 7 -6 =7 + (-6) 1111111001
£7: 00000000 ...0000 0111 7117113010

—6: 1111 1111 ... 1111 1010
+1: 0000 0000 ... 0000 0001
Overflow if result out of range
Subtracting two +ve or two —ve operands, no overflow
Subtracting +ve from —ve operand
Overflow if result sign is 0

Subtracting —ve from +ve operand
Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 4

Chapter 3 — Arithmetic for Computers

14 October, 2014

Morgan Kaufmann Publishers 14 October, 2014

| Dealing with Overflow

| Some languages (e.g., C) ignore overflow
Use MIPS addu, addui, subu instructions

Other languages (e.g., Ada, Fortran)
require raising an exception
Use MIPS add, addi, sub instructions

On overflow, invoke exception handler

Save PC in exception program counter (EPC)
register

Jump to predefined handler address

m¥cO (move from coprocessor reg) instruction can
retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers —5

| Arithmetic for Multimedia

| Graphics and media processing operates
on vectors of 8-bit and 16-bit data

Use 64-bit adder, with partitioned carry chain
Operate on 8x8-bit, 4x16-bit, or 2x32-bit vectors
SIMD (single-instruction, multiple-data)
Saturating operations

On overflow, result is largest representable
value

c.f. 2s-complement modulo arithmetic
E.g., clipping in audio, saturation in video

Chapter 3 — Arithmetic for Computers — 6

Chapter 3 — Arithmetic for Computers 3

Morgan Kaufmann Publishers

| Multiplication

| Start with long-multiplication approach

multiplicand \

1000
X 1001
1000
0000
0000
1000

—1001000

Length of product is
the sum of operand
lengths

-

-
Multiplicand
Shift left
64 bits
y
—
N .
) Multiplier
64-bit ALU Shift right

32 bits

Product

Write

| 64 bits

Chapter

3 — Arithmetic for Computers — 7

Multiplication Hardware

?

Muliplier0 = 1

1. Test

Multiplier0 = 0

Muliiplierd

1a. Add multiplicand to product and
place the result in Product register

2. Shiftthe Multiplicand register left 1 bit
3. Shift the Multiplier register right 1 bit

N No: < 32 rapetitions.

-

Multiplicand

Shift left

-

64 bits

Y

64-bit ALU

N

—

Multiplier
Shift right

32 bits

Product
Write

| 64 bits

Yes: 32 repetitions

Initially 0

Chapter 3 — Arithmetic for Computers — 8

Chapter 3 — Arithmetic for Computers

14 October, 2014

Morgan Kaufmann Publishers 14 October, 2014

| MIPS Multiplication

| Two 32-bit registers for product
HI: most-significant 32 bits
LO: least-significant 32-bits

Instructions
mult rs, rt / multu rs, rt
64-bit product in HI/LO
mfhi rd / mflo rd

Move from HI/LO to rd
Can test HI value to see if product overflows 32 bits

mul rd, rs, rt
Least-significant 32 bits of product —> rd

Chapter 3 — Arithmetic for Computers — 11

| MIPS Division

| Use HI/LO registers for result
HI: 32-bit remainder
LO: 32-bit quotient
Instructions
div rs, rt / divu rs, rt

No overflow or divide-by-0 checking
Software must perform checks if required

Use mfhi, mFlo to access result

Chapter 3 — Arithmetic for Computers — 16

Chapter 3 — Arithmetic for Computers 5

Morgan Kaufmann Publishers

| Floating Point

Representation for non-integral numbers
Including very small and very large numbers

Like scientific notation

~2.34 x 10%

+0.002 x 10 >‘ not normalized |
+987.02 x 10°

In binary

1. XXXXXXX, X 2999

Types Tloat and doublein C

Chapter 3 — Arithmetic for Computers — 17

Floating Point Standard

Defined by IEEE Std 754-1985

Developed in response to divergence of
representations
Portability issues for scientific code
Now almost universally adopted
Two representations
Single precision (32-bit)
Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 18

Chapter 3 — Arithmetic for Computers

14 October, 2014

Morgan Kaufmann Publishers 14 October, 2014

| IEEE Floating-Point Format

| single: 8 bits single: 23 bits

double: 11 bits double: 52 bits
S| Exponent Fraction

x = (—1)° x (1+Fraction) x 2(Feenent-8ias)

S: sign bit (0 = non-negative, 1 = negative)
Normalize significand: 1.0 < |significand| < 2.0

Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

Significand is Fraction with the “1.” restored

Exponent: excess representation: actual exponent + Bias
Ensures exponent is unsigned
Single: Bias = 127; Double: Bias = 1203

Chapter 3 — Arithmetic for Computers — 19

| Single-Precision Range

| Exponents 00000000 and 11111111 reserved

Smallest value

Exponent: 00000001
= actual exponent =1 - 127 =-126

Fraction: 000...00 = significand = 1.0
1.0 x 27126 = #1.2 x 1038
Largest value

exponent: 11111110
= actual exponent = 254 — 127 = +127

Fraction: 111...11 = significand = 2.0
2.0 x 2127 = +3.4 x 10*38

Chapter 3 — Arithmetic for Computers — 20

Chapter 3 — Arithmetic for Computers 7

Morgan Kaufmann Publishers 14 October, 2014

| Double-Precision Range

| Exponents 0000...00 and 1111...11 reserved

Smallest value

Exponent: 00000000001
= actual exponent = 1 - 1023 = -1022

Fraction: 000...00 = significand = 1.0
+1.0 x 21022 = +2 2 x 10308

Largest value

Exponent: 11111111110
= actual exponent = 2046 — 1023 = +1023

Fraction: 111...11 = significand = 2.0
+2.0 x 21023 =~ +1 .8 x 10+308

Chapter 3 — Arithmetic for Computers — 21

| Floating-Point Precision

| Relative precision
all fraction bits are significant
Single: approx 2-23
Equivalent to 23 x log,,2 = 23 x 0.3 = 6 decimal
digits of precision
Double: approx 252

Equivalent to 52 x log,,2 = 52 x 0.3 = 16 decimal
digits of precision

Chapter 3 — Arithmetic for Computers — 22

Chapter 3 — Arithmetic for Computers

Morgan Kaufmann Publishers 14 October, 2014

| Floating-Point Example

| Represent —0.75
-0.75=(-1)' x 1.1, x 21
S =
Fraction = 1000...00,
Exponent = —1 + Bias
Single: =1 + 127 =126 = 01111110,
Double: =1 + 1023 = 1022 = 01111111110,

Single: 1011111101000...00
Double: 1011111111101000...00

Chapter 3 — Arithmetic for Computers — 23

| Floating-Point Example

| What number is represented by the single-
precision float
1000000101000...00
S =
Fraction = 01000...00,
Fxponent = 10000001, = 129
X = (_1)1 x (1 + 012) x 2(129 - 127)
= (=1) x 1.25 x 22
=-5.0

Chapter 3 — Arithmetic for Computers — 24

Chapter 3 — Arithmetic for Computers 9

Morgan Kaufmann Publishers 14 October, 2014

| Denormal Numbers

| Exponent = 000...0 = hidden bit is 0
x = (-1)° x (0 +Fraction) x 2 ®=°

Smaller than normal numbers
allow for gradual underflow, with
diminishing precision

Denormal with fraction = 000...0

x = (=1)5 x(0+0)x 25 = +0.0
-

Two representations
of 0.0!

Chapter 3 — Arithmetic for Computers — 25

| Infinities and NaNs

| Exponent = 111...1, Fraction = 000...0
tInfinity

Can be used in subsequent calculations,
avoiding need for overflow check

Exponent = 111...1, Fraction # 000...0

Not-a-Number (NaN)

Indicates illegal or undefined result
e.g.,0.0/0.0

Can be used in subsequent calculations

Chapter 3 — Arithmetic for Computers — 26

Chapter 3 — Arithmetic for Computers 10

Morgan Kaufmann Publishers 14 October, 2014

| Floating-Point Addition

| Consider a 4-digit decimal example
9.999 x 10" + 1.610 x 10"
1. Align decimal points

Shift number with smaller exponent
9.999 x 10" + 0.016 x 10’

2. Add significands
9.999 x 10" + 0.016 x 10" = 10.015 x 10"

3. Normalize result & check for over/underflow
1.0015 x 102

4. Round and renormalize if necessary
1.002 x 102

Chapter 3 — Arithmetic for Computers — 27

| Floating-Point Addition

| Now consider a 4-digit binary example
1.000, x 21 + -1.110, x 22 (0.5 + —0.4375)
1. Align binary points
Shift number with smaller exponent
1.000, x 2= + —0.111, x 2-1
2. Add significands
1.000, x 2-' + —0.111, x 2-1 = 0.001,, x 2-1
3. Normalize result & check for over/underflow
1.000, x 24, with no over/underflow
4. Round and renormalize if necessary
1.000, x 2 (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 28

Chapter 3 — Arithmetic for Computers 11

Morgan Kaufmann Publishers 14 October, 2014

| FP Adder Hardware

| Much more complex than integer adder
Doing it in one clock cycle would take too
long
Much longer than integer operations
Slower clock would penalize all instructions
FP adder usually takes several cycles
Can be pipelined

Chapter 3 — Arithmetic for Computers — 29

| FP Adder Hardware

| [Sign | Exponent | Fraction | [Signl Exponent | Fraction |

Compare
exponents

Shift smaller
number right

} -

Chapter 3 — Arithmetic for Computers — 30

Chapter 3 — Arithmetic for Computers 12

Morgan Kaufmann Publishers

| Floating-Point Multiplication

| Consider a 4-digit decimal example

1.110 x 100 x 9.200 x 10-5

1. Add exponents

For biased exponents, subtract bias from sum
New exponent=10+-5=5

2. Multiply significands

1.110 x 9.200 = 10.212 = 10.212 x 10°

3. Normalize result & check for over/underflow

1.0212 x 108

4. Round and renormalize if necessary

1.021 x 108

5. Determine sign of result from signs of operands

+1.021 x 108

Chapter 3 — Arithmetic for Computers — 31

| Floating-Point Multiplication

1

| Now consider a 4-digit binary example

1.000, x 2-' x —1.110, x 272 (0.5 x —0.4375)

. Add exponents

Unbiased: -1 + -2 = -3
Biased: (—1 + 127) + (-2 + 127) = -3 + 254 — 127 = -3 + 127

. Multiply significands

1.000, x 1.110, = 1.1102 = 1.110, x 2-3

. Normalize result & check for over/underflow

1.110, x 23 (no change) with no over/underflow

. Round and renormalize if necessary

1.110, x 273 (no change)

. Determine sign: +ve x —ve = —ve

-1.110, x 23 =-0.21875

Chapter 3 — Arithmetic for Computers — 32

Chapter 3 — Arithmetic for Computers

14 October, 2014

13

