
Morgan Kaufmann Publishers 24 November, 2014

Chapter 4 — The Processor 1

Chapter 4 — The Processor — 33

Branch Instructions

 Read register operands

 Compare operands
 Use ALU, subtract and check Zero output

 Calculate target address
 Sign-extend displacement

 Shift left 2 places (word displacement)

 Add to PC + 4
 Already calculated by instruction fetch

beq $t1, $t2, offset

Chapter 4 — The Processor — 34

Branch Instructions

Just
re-routes

wires

Sign-bit wire
replicated

Morgan Kaufmann Publishers 24 November, 2014

Chapter 4 — The Processor 2

Chapter 4 — The Processor — 35

Composing the Elements

 First-cut data path does an instruction in
one clock cycle
 Each datapath element can only do one

function at a time

 Hence, we need separate instruction and data
memories

 Use multiplexers where alternate data
sources are used for different instructions

Chapter 4 — The Processor — 36

R-Type/Load/Store Datapath

Morgan Kaufmann Publishers 24 November, 2014

Chapter 4 — The Processor 3

Chapter 4 — The Processor — 37

Full Datapath

Chapter 4 — The Processor — 38

ALU Control

 ALU used for
 Load/Store: F = add

 Branch: F = subtract

 R-type: F depends on funct field

§4.4 A
 S

im
ple Im

plem
entation S

chem
eALU control Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set-on-less-than

1100 NOR

Morgan Kaufmann Publishers 24 November, 2014

Chapter 4 — The Processor 4

Chapter 4 — The Processor — 39

ALU Control

 Assume 2-bit ALUOp derived from opcode
 Combinational logic derives ALU control

opcode ALUOp Operation funct ALU function ALU control

lw 00 load word XXXXXX add 0010

sw 00 store word XXXXXX add 0010

beq 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

subtract 100010 subtract 0110

AND 100100 AND 0000

OR 100101 OR 0001

set-on-less-than 101010 set-on-less-than 0111

Chapter 4 — The Processor — 40

The Main Control Unit

 Control signals derived from instruction

0 rs rt rd shamt funct

31:26 5:025:21 20:16 15:11 10:6

35 or 43 rs rt address

31:26 25:21 20:16 15:0

4 rs rt address

31:26 25:21 20:16 15:0

R-type

Load/
Store

Branch

opcode always
read

read,
except
for load

write for
R-type

and load

sign-extend
and add

Morgan Kaufmann Publishers 24 November, 2014

Chapter 4 — The Processor 5

Almost Complete datapath

Chapter 4 — The Processor — 41

Read
Address

Instr[31-0]

Instruction
Memory

Add

PC

4

Write Data

Read Addr 1

Read Addr 2

Write Addr
ALU

ovfzero

Data
Memory

Address

Write Data

Read Data

MemWrite

MemRead

Register

File

Read
Data 1

Read
Data 2

RegWrite

Sign
Extend16 32

MemtoRegALUSrc

Shift
left 2

Add

PCSrc

1
0

RegDst

0

1

1
0

1

0

ALU
control

ALUOp
Instr[5-0]

Instr[15-0]

Instr[25-21]

Instr[20-16]

Instr[15
-11]

Control signals
Signal name Deasserted Asserted

RegDst Reg dest number is
from rt bits[20:16]

Reg dest number comes from
bits[15:11]

RegWrite NON Data is written in the register
specified by the write reg number

ALUSrc Register file (2nd

operand)
Sign extended immediate

MemRead NON Data memory Read Data Output

MemWrite NON Write data Input memory

memtoReg ALU Register file Memory Register file

Chapter 4 — The Processor — 42

Morgan Kaufmann Publishers 24 November, 2014

Chapter 4 — The Processor 6

Chapter 4 — The Processor — 43

Datapath With Control

Chapter 4 — The Processor — 44

R-Type Instruction

Morgan Kaufmann Publishers 24 November, 2014

Chapter 4 — The Processor 7

Chapter 4 — The Processor — 45

Load Instruction

Chapter 4 — The Processor — 46

Branch-on-Equal Instruction

Morgan Kaufmann Publishers 24 November, 2014

Chapter 4 — The Processor 8

Chapter 4 — The Processor — 47

Implementing Jumps

 Jump uses word address

 Update PC with concatenation of
 Top 4 bits of old PC

 26-bit jump address

 00

 Need an extra control signal decoded from
opcode

2 address

31:26 25:0

Jump

Chapter 4 — The Processor — 48

Datapath With Jumps Added

Morgan Kaufmann Publishers 24 November, 2014

Chapter 4 — The Processor 9

Chapter 4 — The Processor — 49

Performance Issues

 Longest delay determines clock period
 Critical path: load instruction

 Instruction memory register file ALU
data memory register file

 Not feasible to vary period for different
instructions

 Violates design principle
 Making the common case fast

 We will improve performance by pipelining

Chapter 4 — The Processor — 50

Pipelining Analogy

 Pipelined laundry: overlapping execution
 Parallelism improves performance

§4.5 A
n O

verview
 of P

ipelining Four loads:
 Speedup

= 8/3.5 = 2.3

 Non-stop:
 Speedup

= 2n/0.5n + 1.5 ≈ 4
= number of stages

Morgan Kaufmann Publishers 24 November, 2014

Chapter 4 — The Processor 10

Chapter 4 — The Processor — 51

MIPS Pipeline

 Five stages, one step per stage
1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

Chapter 4 — The Processor — 52

Pipeline Performance

 Assume time for stages is
 100ps for register read or write

 200ps for other stages

 Compare pipelined datapath with single-cycle
datapath

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Morgan Kaufmann Publishers 24 November, 2014

Chapter 4 — The Processor 11

Chapter 4 — The Processor — 53

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Chapter 4 — The Processor — 54

Pipeline Speedup

 If all stages are balanced
 i.e., all take the same time

 Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

 If not balanced, speedup is less

 Speedup due to increased throughput
 Latency (time for each instruction) does not

decrease

Morgan Kaufmann Publishers 24 November, 2014

Chapter 4 — The Processor 12

Chapter 4 — The Processor — 55

Pipelining and ISA Design

 MIPS ISA designed for pipelining
 All instructions are 32-bits

 Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage

 Alignment of memory operands
 Memory access takes only one cycle

