

EECS2021 Computer Organization

- Computer Organization and Design

 The hardware/Software approach
- Patterson and John Hennessy
- Morgan kaufmann
- Assessment:

Assignments/Quizzes 20%

Lab 20%

Midterm 25%

■ Final 35%

EECS2021 Computer Organization

- Monday and Wednesday 5:30-7:00pm
- LSB 106
- 2 Lab sections
 - Monday 7-10pm LAS 1006
 - Tuesday 7-10pm LAS 1006/2
- Labs start The week of Sept. 15
- Labs are posted on the course web page

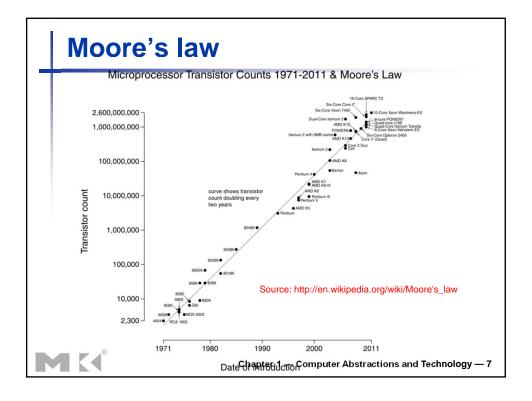
Chapter 1 — Computer Abstractions and Technology — 3

Topics

- Computer abstraction and technology Ch 1
- Instruction language of the computer Ch 2
- Verilog -- Notes
- Arithmetic for computers Ch 3
- The processor Ch 4

What You Will Learn

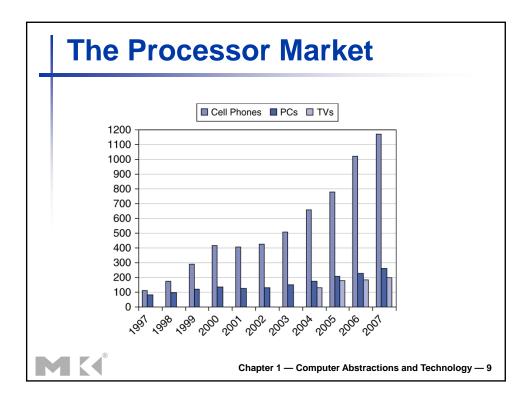
- How programs are translated into the machine language
 - And how the hardware executes them
- The hardware/software interface
- What determines program performance
 - And how it can be improved
- How the CPU works and how to improve its perfromance.



Chapter 1 — Computer Abstractions and Technology — 5

The Computer Revolution

- Progress in computer technology
 - Underpinned by Moore's Law
- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones
 - Human genome project
 - World Wide Web
 - Search Engines
- Computers are pervasive



Classes of Computers

- Desktop computers
 - General purpose, variety of software
 - Subject to cost/performance tradeoff
- Server computers
 - Network based
 - High capacity, performance, reliability
 - Range from small servers to building sized
- Embedded computers
 - Hidden as components of systems
 - Stringent power/performance/cost constraints

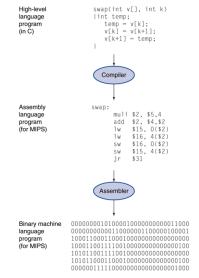
How computers work?

- In your first year, you studies programming (java)
- Sequence of instructions
- Translated to machine language
- Instructions are fetched from the memory one after the other and executed

Eight Great Ideas

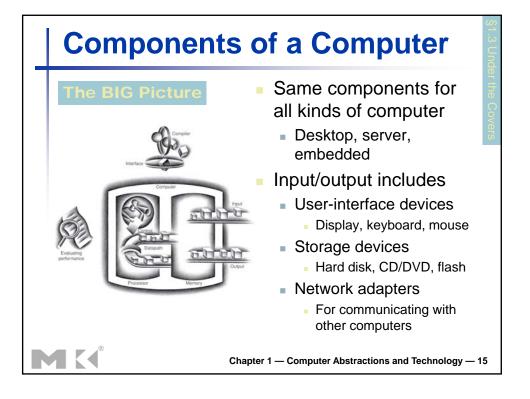
- Design for Moore's Law
- Use Abstraction to Simplify Design
- Make the Common case fast
- 4. Performance via Parallelism
- 5. Performance via Pipelining
- Performance via Prediction
- 7. Hierarchy of Memories
- 8. Dependability via Redundancy

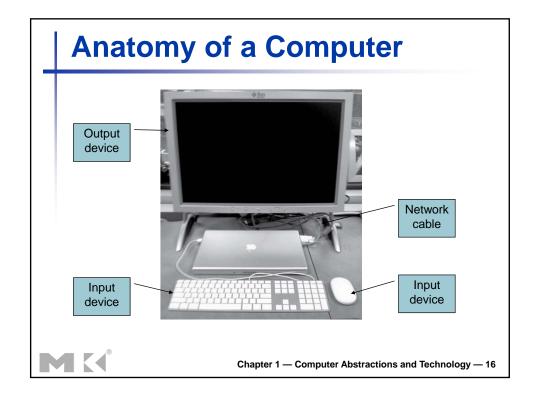
 ${\bf Chapter~1-Computer~Abstractions~and~Technology-11}$


Below Your Program

- Application software
 - Written in high-level language
- System software
 - Compiler: translates HLL code to machine code
 - Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources
- Hardware
 - Processor, memory, I/O controllers

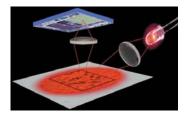
- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data




Chapter 1 — Computer Abstractions and Technology — 13

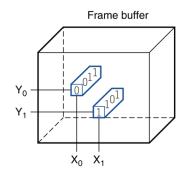
Understanding Performance

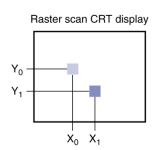
- Algorithm
 - Determines number of operations executed
- Programming language, compiler, architecture
 - Determine number of machine instructions executed per operation
- Processor and memory system
 - Determine how fast instructions are executed
- I/O system (including OS)
 - Determines how fast I/O operations are executed



Anatomy of a Mouse

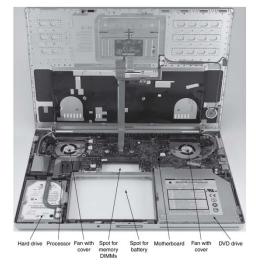
- Optical mouse
 - LED illuminates desktop
 - Small low-res camera
 - Basic image processor
 - Looks for x, y movement
 - Buttons & wheel
- Supersedes roller-ball mechanical mouse





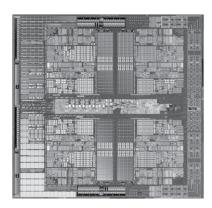
Chapter 1 — Computer Abstractions and Technology — 17

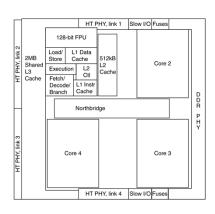
Through the Looking Glass


- LCD screen: picture elements (pixels)
 - Mirrors content of frame buffer memory

Opening the Box

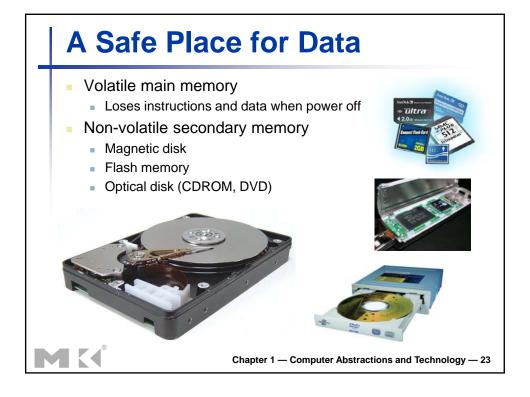
Chapter 1 — Computer Abstractions and Technology — 19


Inside the Processor (CPU)


- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - Small fast SRAM memory for immediate access to data

Inside the Processor

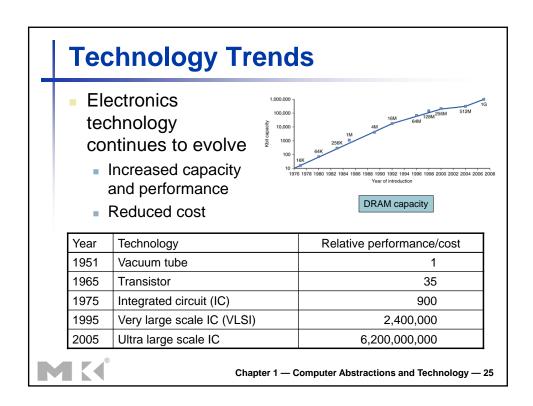
AMD Barcelona: 4 processor cores


Chapter 1 — Computer Abstractions and Technology — 21

Abstractions

The BIG Picture

- Abstraction helps us deal with complexity
 - Hide lower-level detail
- Instruction set architecture (ISA)
 - The hardware/software interface
- Application binary interface
 - The ISA plus system software interface
- Implementation
 - The details underlying and interface



- Communication and resource sharing
- Local area network (LAN): Ethernet
 - Within a building
- Wide area network (WAN: the Internet
- Wireless network: WiFi, Bluetooth

