The University of Adelaide, School of Computer Science 17 September 2014

e COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

| EECS 2021

| Computer Organization
Fall 2014

Based on slides by the author and prof.
Mary Jane Irwin of PSU.

| Chapter Summary

| Stored-program concept
Assembly language
Number representation
Instruction representation
Supporting procedures in hardware
MIPS addressing
Some real-world stuff
Fallacies and Pitfalls

Chapter 2 — Instructions: Language of the Computer — 2

Chapter 2 — Instructions: Language of the Computer 1

The University of Adelaide, School of Computer Science

| Stored-Program Concept

Program instructions are stored in the
memory.

Every cycle, an instruction is read from the
memory (fetched).

The instruction is examined to decide what
to do (decode)

Then we perform the operation stated in
the instruction (execute)

Fetch-Decode-Execute cycle.

Chapter 2 — Instructions: Language of the Computer — 3

| Instruction Set

The repertoire of instructions of a
computer

Different computers have different
instruction sets

But with many aspects in common

Early computers had very simple
instruction sets

Simplified implementation

Many modern computers also have simple
instruction sets RISC vs. CISC

Chapter 2 — Instructions: Language of the Computer — 4

Chapter 2 — Instructions: Language of the Computer

17 September 2014

The University of Adelaide, School of Computer Science 17 September 2014

| The MIPS Instruction Set

| Used as the example throughout the book

Stanford MIPS commercialized by MIPS

Technologies ()

Large share of embedded core market
Applications in consumer electronics, network/storage
equipment, cameras, printers, ...

Typical of many modern ISAs

See MIPS Reference Data tear-out card, and
Appendixes B and E

Chapter 2 — Instructions: Language of the Computer — 5

| Arithmetic Operations

| Add and subtract, three operands
Two sources and one destination
add a, b, ¢ # agets b + c
All arithmetic operations have this form
Design Principle 1. Simplicity favors
regularity
Regularity makes implementation simpler

Simplicity enables higher performance at
lower cost

Chapter 2 — Instructions: Language of the Computer — 6

Chapter 2 — Instructions: Language of the Computer 3

The University of Adelaide, School of Computer Science 17 September 2014

| Arithmetic Example

| C code:
f=(@@+h) -0+]J);
Compiled MIPS code:

add t0, g, h # temp t0O = ¢
add tl1, 1, j # temp tl1 = 1
sub £, t0, t1 # f = t0 - t1

+ h
+

Chapter 2 — Instructions: Language of the Computer — 7

| Register Operands

| Arithmetic instructions use register
operands
MIPS has a 32 x 32-bit register file
Use for frequently accessed data
Numbered 0 to 31
32-bit data called a “word”
Assembler names
$t0, $t1, ..., $t9 for temporary values
$s0, $s1, ..., $s7 for saved variables
Design Principle 2: Smaller is faster
c.f. main memory: millions of locations

Chapter 2 — Instructions: Language of the Computer — 8

Chapter 2 — Instructions: Language of the Computer 4

The University of Adelaide, School of Computer Science

$z

== """""""]

ZETD o constant O
jat 1 reserved for assembler
$v0 2 expression evaluation and results of a function
$vl 3 expression evaluation and results of a function
$a0 4 argument 1
$al 5 argument 2
3az] argument 3
3a3 7 argument 4
$t0 8 temporary (not preserved across call)
$tl a temporary (not preserved across call)
$t2 10 temporary (not preserved across call)
$t3 11 temporary (not preserved across call)
$t4 12 temporary (not preserved across call)
$t5 13 temporary (not preserved across call)
34 14 temporary (not preserved across call)
$t7 15 temporary (not preserved across call)
$s0 16 saved temporary (preserved a call)
$s1 7 saved temporary (preserved a call)
$s2 18 saved temporary (preserved across call)
353 19 saved temporary (preserved a call)
$s4 20 saved temporary (preserved a call)
$s5 21 saved temporary (preserved across call)
$s6 22 saved temporary (preserved a call)
$s7 23 saved temporary (preserved a call)
$t8 24 temporary (not preserved across call)
$t9 25 temporary (not preserved across call)
$k0 26 reserved for 05 kernel
$k1 a7 reserved for 05 kemnel
$gp 28 pointer to global area
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 retumn address (used by function call)

wiiapter 2 — msuucuuns: Language of the Computer — 9

| Register Operand Example

C code:

Ff=@+h -G+]J);
f,...,jin$s0, ..., $s4
Compiled MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 10

Chapter 2 — Instructions: Language of the Computer

17 September 2014

The University of Adelaide, School of Computer Science

Memory Operands

Main memory used for composite data
Arrays, structures, dynamic data
To apply arithmetic operations
Load values from memory into registers
Store result from register to memory
Memory is byte addressed
Each address identifies an 8-bit byte
Words are aligned in memory
Address must be a multiple of 4
MIPS is Big Endian
Most-significant byte at least address of a word
c.f. Little Endian: least-significant byte at least address

Chapter 2 — Instructions: Language of the Computer — 11

| Memory Access

Another way to put it

Big Endian: leftmost byte is word address
Little Endian: rightmost byte is word address
little endian LSB MSB
Bytes address 0 1 2 3

big endian MSB LSB

Alignment restriction: requires
that objects fall on address that

is multiple of their size Not

Aligned

Chapter 2 — Instructions: Language of the Computer — 12

Chapter 2 — Instructions: Language of the Computer

17 September 2014

The University of Adelaide, School of Computer Science 17 September 2014

| Loading and Storing Bytes

| MIPS provides special instructions to move bytes
Ib $t0, 1($s3) #load byte from memory
sb $t0, 6($s3) #store byte to memory

What 8 bits get loaded and stored?
load byte places the byte from memory in the
rightmost 8 bits of the destination register
what happens to the other bits in the register?
store byte takes the byte from the rightmost 8 bits of a
register and writes it to the byte in memory

leaving the other bytes in the memory word
unchanged

Chapter 2 — Instructions: Language of the Computer — 13

| Example

Given following code sequence and memory
state what is the state of the memory after
executing the code?

add $s3, $zero, $zero

Ib $t0, 1(%$s3) . i
sb $t0. 6($s3) What value is left in $t0?

Memory $t0 = 0x00000090

241 0x00000000 | 24

20| 0x00000000 | 20 What word is changed in Memory
and to what?

16| 0x00000000 | 16
12| 0x10000010 | 12 mem(4) = OXFFFFOO0FF

0x01000402 | 8 What if the machine was little
4 |OXFFFFFFFF| 4 Endian? $t0 = 0x00000012
0 [0x009012A0] 0 mem(4) = OXFF12FFFF

Data
Chapter 2 — Instructions: Language of the Computer — 14

Chapter 2 — Instructions: Language of the Computer 7

The University of Adelaide, School of Computer Science

| Example

$3 | 0x10001000

Byte address

OxF2

0x10001002

$12

lbu $12, 2($3)

Chapter 2 — Instructions: Language of the Computer — 15

Example

$3 | 0x10001000

Byte address

OxF2

0x10001002

$12

b $12, 2($3)

Chapter 2 — Instructions: Language of the Computer — 16

Chapter 2 — Instructions: Language of the Computer

17 September 2014

The University of Adelaide, School of Computer Science

| Example

$3 | 0x10001000

$11
$12 | 0xA011C1D1

sb $11, 2($3)

Byte address

?? 0x10001002

Chapter 2 — Instructions: Language of the Computer — 17

Chapter 2 — Instructions: Language of the Computer

17 September 2014

