
The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 1

EECS 2021
Computer Organization

Fall 2014

Based on slides by the author and prof.
Mary Jane Irwin of PSU.

Chapter Summary

 Stored-program concept

 Assembly language

 Number representation

 Instruction representation

 Supporting procedures in hardware

 MIPS addressing

 Some real-world stuff

 Fallacies and Pitfalls

Chapter 2 — Instructions: Language of the Computer — 2

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 2

Stored-Program Concept

 Program instructions are stored in the
memory.

 Every cycle, an instruction is read from the
memory (fetched).

 The instruction is examined to decide what
to do (decode)

 Then we perform the operation stated in
the instruction (execute)

 Fetch-Decode-Execute cycle.

Chapter 2 — Instructions: Language of the Computer — 3

Chapter 2 — Instructions: Language of the Computer — 4

Instruction Set

 The repertoire of instructions of a
computer

 Different computers have different
instruction sets
 But with many aspects in common

 Early computers had very simple
instruction sets
 Simplified implementation

 Many modern computers also have simple
instruction sets RISC vs. CISC

§2.1 Introduction

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 3

Chapter 2 — Instructions: Language of the Computer — 5

The MIPS Instruction Set

 Used as the example throughout the book

 Stanford MIPS commercialized by MIPS
Technologies (www.mips.com)

 Large share of embedded core market
 Applications in consumer electronics, network/storage

equipment, cameras, printers, …

 Typical of many modern ISAs
 See MIPS Reference Data tear-out card, and

Appendixes B and E

Chapter 2 — Instructions: Language of the Computer — 6

Arithmetic Operations

 Add and subtract, three operands
 Two sources and one destination

add a, b, c # a gets b + c

 All arithmetic operations have this form

 Design Principle 1: Simplicity favors
regularity
 Regularity makes implementation simpler

 Simplicity enables higher performance at
lower cost

§2.2 O
perations of the C

om
puter H

ardw
are

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 4

Chapter 2 — Instructions: Language of the Computer — 7

Arithmetic Example

 C code:

f = (g + h) - (i + j);

 Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 8

Register Operands
 Arithmetic instructions use register

operands
 MIPS has a 32 × 32-bit register file

 Use for frequently accessed data
 Numbered 0 to 31
 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values
 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§2.3 O
perands of the C

om
puter H

ardw
are

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 5

Chapter 2 — Instructions: Language of the Computer — 9

Chapter 2 — Instructions: Language of the Computer — 10

Register Operand Example

 C code:
f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4

 Compiled MIPS code:
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 6

Chapter 2 — Instructions: Language of the Computer — 11

Memory Operands
 Main memory used for composite data

 Arrays, structures, dynamic data
 To apply arithmetic operations

 Load values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian
 Most-significant byte at least address of a word
 c.f. Little Endian: least-significant byte at least address

Memory Access

Chapter 2 — Instructions: Language of the Computer — 12

Alignment restriction: requires
that objects fall on address that
is multiple of their size

0 1 2 3

Aligned

Not
Aligned

0 1 2 3

0 1 2 3

big endian MSB LSB

little endian LSB MSB

Bytes address

Another way to put it
Big Endian: leftmost byte is word address
Little Endian: rightmost byte is word address

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 7

Loading and Storing Bytes

 MIPS provides special instructions to move bytes

 What 8 bits get loaded and stored?
 load byte places the byte from memory in the

rightmost 8 bits of the destination register
 what happens to the other bits in the register?

 store byte takes the byte from the rightmost 8 bits of a
register and writes it to the byte in memory

 leaving the other bytes in the memory word
unchanged

Chapter 2 — Instructions: Language of the Computer — 13

lb $t0, 1($s3) #load byte from memory

sb $t0, 6($s3) #store byte to memory

Example

Chapter 2 — Instructions: Language of the Computer — 14

 Given following code sequence and memory
state what is the state of the memory after
executing the code?

add $s3, $zero, $zero
lb $t0, 1($s3)
sb $t0, 6($s3)
Memory

0x 0 0 9 0 1 2 A 0
Data

0

4

8

12

16

20

24

0x F F F F F F F F

0x 0 1 0 0 0 4 0 2

0x 1 0 0 0 0 0 1 0

0x 0 0 0 0 0 0 0 0

0x 0 0 0 0 0 0 0 0

0x 0 0 0 0 0 0 0 0

 What value is left in $t0?

 What if the machine was little
Endian?

 What word is changed in Memory
and to what?

$t0 = 0x00000090

mem(4) = 0xFFFF90FF

$t0 = 0x00000012
mem(4) = 0xFF12FFFF0

4

8

12

16

20

24

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 8

Example

Chapter 2 — Instructions: Language of the Computer — 15

$3

$12

lbu $12, 2($3)

0x10001000

0xF2 0x10001002

Byte address

Example

Chapter 2 — Instructions: Language of the Computer — 16

$3

$12

lb $12, 2($3)

0x10001000

0xF2 0x10001002

Byte address

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 9

Example

Chapter 2 — Instructions: Language of the Computer — 17

$3

$11

$12

sb $11, 2($3)

0x10001000

?? 0x10001002

Byte address

0xA011C1D1

