
The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 1

Chapter 2 — Instructions: Language of the Computer — 18

Memory Operand Example 1

 C code:
g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 19

Memory Operand Example 2

 C code:
A[12] = h + A[8];

 h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 2

Chapter 2 — Instructions: Language of the Computer — 20

Registers vs. Memory

 Registers are faster to access than
memory

 Operating on memory data requires loads
and stores
 More instructions to be executed

 Compiler must use registers for variables
as much as possible
 Only spill to memory for less frequently used

variables
 Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 21

Immediate Operands

 Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction
 Just use a negative constant
addi $s2, $s1, -1

 Design Principle 3: Make the common
case fast
 Small constants are common

 Immediate operand avoids a load instruction

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 3

Chapter 2 — Instructions: Language of the Computer — 22

The Constant Zero

 MIPS register 0 ($zero) is the constant 0
 Cannot be overwritten

 Useful for common operations
 E.g., move between registers

add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 23

Unsigned Binary Integers

 Given an n-bit number
0

0
1

1
2n

2n
1n

1n 2x2x2x2xx

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

§2.4 S
igned and U

nsigned N
um

bers

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 4

Chapter 2 — Instructions: Language of the Computer — 24

2s-Complement Signed Integers

 Given an n-bit number
0

0
1

1
2n

2n
1n

1n 2x2x2x2xx

 Range: –2n – 1 to +2n – 1 – 1

 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 25

2s-Complement Signed Integers

 Bit 31 is sign bit
 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
 Non-negative numbers have the same unsigned

and 2s-complement representation
 Some specific numbers

 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 5

Chapter 2 — Instructions: Language of the Computer — 26

Signed Negation

 Complement and add 1
 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2

 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102

2’s Complement

Chapter 2 — Instructions: Language of the Computer — 27

2’sc binary decimal

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 723 - 1 =

-(23 - 1) =

-23 =

complement all the bits

0101
and add a 1

0110 (6)

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 6

Chapter 2 — Instructions: Language of the Computer — 28

Sign Extension
 Representing a number using more bits

 Preserve the numeric value

 In MIPS instruction set
 addi: extend immediate value
 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

Chapter 2 — Instructions: Language of the Computer — 29

Representing Instructions

 Instructions are encoded in binary
 Called machine code

 MIPS instructions
 Encoded as 32-bit instruction words

 Small number of formats encoding operation code
(opcode), register numbers, …

 Regularity!

 Register numbers
 $t0 – $t7 are reg’s 8 – 15

 $t8 – $t9 are reg’s 24 – 25

 $s0 – $s7 are reg’s 16 – 23

§2.5 R
epresenting Instructions in the C

om
puter

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 7

Chapter 2 — Instructions: Language of the Computer — 30

MIPS R-format Instructions

 Instruction fields
 op: operation code (opcode)

 rs: first source register number

 rt: second source register number

 rd: destination register number

 shamt: shift amount (00000 for now)

 funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 31

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32|ten

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 8

Chapter 2 — Instructions: Language of the Computer — 32

Hexadecimal

 Base 16
 Compact representation of bit strings
 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

 Example: eca8 6420
 1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 33

MIPS I-format Instructions

 Immediate arithmetic and load/store instructions
 rt: destination -- rs source register number
 Constant: –215 to +215 – 1
 Address: offset added to base address in rs

 Design Principle 4: Good design demands
good compromises
 Different formats complicate decoding, but allow 32-bit

instructions uniformly
 Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 9

Chapter 2 — Instructions: Language of the Computer — 34

MIPS I-format Instructions

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

addi $t0, $s1, 10

addi $t0 $s1 constant

8 8 17 10

001000 10000 10001 0000000000001010

Chapter 2 — Instructions: Language of the Computer — 35

Stored Program Computers
 Instructions represented in

binary, just like data
 Instructions and data stored

in memory
 Programs can operate on

programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work
on different computers
 Standardized ISAs

The BIG Picture

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 10

Chapter 2 — Instructions: Language of the Computer — 36

Logical Operations

 Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting
groups of bits in a word

§2.6 Logical O
perations

Chapter 2 — Instructions: Language of the Computer — 37

Shift Operations

 shamt: how many positions to shift
 Shift left logical

 Shift left and fill with 0 bits
 sll by i bits multiplies by 2i

 Shift right logical
 Shift right and fill with 0 bits
 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 11

Chapter 2 — Instructions: Language of the Computer — 38

AND Operations

 Useful to mask bits in a word
 Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

Chapter 2 — Instructions: Language of the Computer — 39

OR Operations

 Useful to include bits in a word
 Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 12

Chapter 2 — Instructions: Language of the Computer — 40

NOT Operations

 Useful to invert bits in a word
 Change 0 to 1, and 1 to 0

 MIPS has NOR 3-operand instruction
 a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always
read as zero

0000 0000 0000 0000 0000 0000 0000 0000$zero

Chapter 2 — Instructions: Language of the Computer — 41

Conditional Operations

 Branch to a labeled instruction if a
condition is true
 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1
 unconditional jump to instruction labeled L1

§2.7 Instructions for M
aking D

ecisions

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 13

Chapter 2 — Instructions: Language of the Computer — 42

Compiling If Statements

 C code:

if (i==j) f = g+h;
else f = g-h;

 f, g, … in $s0, $s1, …

 Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

i j

Chapter 2 — Instructions: Language of the Computer — 43

Compiling Loop Statements
 C code:
while (save[i] == k) i += 1;

 i in $s3, k in $s5, address of save in $s6
 Compiled MIPS code:
Loop: sll $t1, $s3, 2

add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

Multiply i by 4

Address of
save[i]

save[i]

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 14

Chapter 2 — Instructions: Language of the Computer — 44

Basic Blocks

 A basic block is a sequence of instructions
with
 No embedded branches (except at end)

 No branch targets (except at beginning)

 A compiler identifies basic
blocks for optimization

 An advanced processor
can accelerate execution
of basic blocks

Compiling Case Statement

Chapter 2 — Instructions: Language of the Computer — 45

switch (k) {
case 0: h=i+j; break; /*k=0*/
case 1: h=i+h; break; /*k=1*/
case 2: h=i-j; break; /*k=2*/

 Assuming three sequential words in
memory starting at the address in $t4
have the addresses of the labels L0, L1,
and L2 and k is in $s2

add $t1, $s2, $s2 #$t1 = 2*k
add $t1, $t1, $t1 #$t1 = 4*k
add $t1, $t1, $t4 #$t1 = addr of JumpT[k]
lw $t0, 0($t1) #$t0 = JumpT[k]
jr $t0 #jump based on $t0

L0: add $s3, $s0, $s1 #k=0 so h=i+j
j Exit

L1: add $s3, $s0, $s3 #k=1 so h=i+h
j Exit

L2: sub $s3, $s0, $s1 #k=2 so h=i-j

Exit: . . .

$t4

L2
L1
L0

Memory

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 15

Chapter 2 — Instructions: Language of the Computer — 46

More Conditional Operations

 Set dest to 1 if a condition is true
 Otherwise, set to 0

 slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 47

Branch Instruction Design

 Why not blt, bge, etc?

 Hardware for <, ≥, … slower than =, ≠
 Combining with branch involves more work

per instruction, requiring a slower clock

 All instructions penalized!

 beq and bne are the common case

 This is a good design compromise

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 16

Chapter 2 — Instructions: Language of the Computer — 48

Signed vs. Unsigned

 Signed comparison: slt, slti

 Unsigned comparison: sltu, sltui

 Example
 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt $t0, $s0, $s1 # signed

 –1 < +1 $t0 = 1

 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1 $t0 = 0

