
The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 1

Chapter 2 — Instructions: Language of the Computer — 18

Memory Operand Example 1

 C code:
g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 19

Memory Operand Example 2

 C code:
A[12] = h + A[8];

 h in $s2, base address of A in $s3

 Compiled MIPS code:
 Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 2

Chapter 2 — Instructions: Language of the Computer — 20

Registers vs. Memory

 Registers are faster to access than
memory

 Operating on memory data requires loads
and stores
 More instructions to be executed

 Compiler must use registers for variables
as much as possible
 Only spill to memory for less frequently used

variables
 Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 21

Immediate Operands

 Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction
 Just use a negative constant
addi $s2, $s1, -1

 Design Principle 3: Make the common
case fast
 Small constants are common

 Immediate operand avoids a load instruction

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 3

Chapter 2 — Instructions: Language of the Computer — 22

The Constant Zero

 MIPS register 0 ($zero) is the constant 0
 Cannot be overwritten

 Useful for common operations
 E.g., move between registers

add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 23

Unsigned Binary Integers

 Given an n-bit number
0

0
1

1
2n

2n
1n

1n 2x2x2x2xx  



 

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

§2.4 S
igned and U

nsigned N
um

bers

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 4

Chapter 2 — Instructions: Language of the Computer — 24

2s-Complement Signed Integers

 Given an n-bit number
0

0
1

1
2n

2n
1n

1n 2x2x2x2xx  



 

 Range: –2n – 1 to +2n – 1 – 1

 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 25

2s-Complement Signed Integers

 Bit 31 is sign bit
 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
 Non-negative numbers have the same unsigned

and 2s-complement representation
 Some specific numbers

 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 5

Chapter 2 — Instructions: Language of the Computer — 26

Signed Negation

 Complement and add 1
 Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2





 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102

2’s Complement

Chapter 2 — Instructions: Language of the Computer — 27

2’sc binary decimal

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 723 - 1 =

-(23 - 1) =

-23 =

complement all the bits

0101
and add a 1

0110 (6)

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 6

Chapter 2 — Instructions: Language of the Computer — 28

Sign Extension
 Representing a number using more bits

 Preserve the numeric value

 In MIPS instruction set
 addi: extend immediate value
 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

Chapter 2 — Instructions: Language of the Computer — 29

Representing Instructions

 Instructions are encoded in binary
 Called machine code

 MIPS instructions
 Encoded as 32-bit instruction words

 Small number of formats encoding operation code
(opcode), register numbers, …

 Regularity!

 Register numbers
 $t0 – $t7 are reg’s 8 – 15

 $t8 – $t9 are reg’s 24 – 25

 $s0 – $s7 are reg’s 16 – 23

§2.5 R
epresenting Instructions in the C

om
puter

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 7

Chapter 2 — Instructions: Language of the Computer — 30

MIPS R-format Instructions

 Instruction fields
 op: operation code (opcode)

 rs: first source register number

 rt: second source register number

 rd: destination register number

 shamt: shift amount (00000 for now)

 funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 31

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32|ten

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 8

Chapter 2 — Instructions: Language of the Computer — 32

Hexadecimal

 Base 16
 Compact representation of bit strings
 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

 Example: eca8 6420
 1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 33

MIPS I-format Instructions

 Immediate arithmetic and load/store instructions
 rt: destination -- rs source register number
 Constant: –215 to +215 – 1
 Address: offset added to base address in rs

 Design Principle 4: Good design demands
good compromises
 Different formats complicate decoding, but allow 32-bit

instructions uniformly
 Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 9

Chapter 2 — Instructions: Language of the Computer — 34

MIPS I-format Instructions

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

addi $t0, $s1, 10

addi $t0 $s1 constant

8 8 17 10

001000 10000 10001 0000000000001010

Chapter 2 — Instructions: Language of the Computer — 35

Stored Program Computers
 Instructions represented in

binary, just like data
 Instructions and data stored

in memory
 Programs can operate on

programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to work
on different computers
 Standardized ISAs

The BIG Picture

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 10

Chapter 2 — Instructions: Language of the Computer — 36

Logical Operations

 Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

 Useful for extracting and inserting
groups of bits in a word

§2.6 Logical O
perations

Chapter 2 — Instructions: Language of the Computer — 37

Shift Operations

 shamt: how many positions to shift
 Shift left logical

 Shift left and fill with 0 bits
 sll by i bits multiplies by 2i

 Shift right logical
 Shift right and fill with 0 bits
 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 11

Chapter 2 — Instructions: Language of the Computer — 38

AND Operations

 Useful to mask bits in a word
 Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

Chapter 2 — Instructions: Language of the Computer — 39

OR Operations

 Useful to include bits in a word
 Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 12

Chapter 2 — Instructions: Language of the Computer — 40

NOT Operations

 Useful to invert bits in a word
 Change 0 to 1, and 1 to 0

 MIPS has NOR 3-operand instruction
 a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always
read as zero

0000 0000 0000 0000 0000 0000 0000 0000$zero

Chapter 2 — Instructions: Language of the Computer — 41

Conditional Operations

 Branch to a labeled instruction if a
condition is true
 Otherwise, continue sequentially

 beq rs, rt, L1
 if (rs == rt) branch to instruction labeled L1;

 bne rs, rt, L1
 if (rs != rt) branch to instruction labeled L1;

 j L1
 unconditional jump to instruction labeled L1

§2.7 Instructions for M
aking D

ecisions

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 13

Chapter 2 — Instructions: Language of the Computer — 42

Compiling If Statements

 C code:

if (i==j) f = g+h;
else f = g-h;

 f, g, … in $s0, $s1, …

 Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

i j

Chapter 2 — Instructions: Language of the Computer — 43

Compiling Loop Statements
 C code:
while (save[i] == k) i += 1;

 i in $s3, k in $s5, address of save in $s6
 Compiled MIPS code:
Loop: sll $t1, $s3, 2

add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

Multiply i by 4

Address of
save[i]

save[i]

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 14

Chapter 2 — Instructions: Language of the Computer — 44

Basic Blocks

 A basic block is a sequence of instructions
with
 No embedded branches (except at end)

 No branch targets (except at beginning)

 A compiler identifies basic
blocks for optimization

 An advanced processor
can accelerate execution
of basic blocks

Compiling Case Statement

Chapter 2 — Instructions: Language of the Computer — 45

switch (k) {
case 0: h=i+j; break; /*k=0*/
case 1: h=i+h; break; /*k=1*/
case 2: h=i-j; break; /*k=2*/

 Assuming three sequential words in
memory starting at the address in $t4
have the addresses of the labels L0, L1,
and L2 and k is in $s2

add $t1, $s2, $s2 #$t1 = 2*k
add $t1, $t1, $t1 #$t1 = 4*k
add $t1, $t1, $t4 #$t1 = addr of JumpT[k]
lw $t0, 0($t1) #$t0 = JumpT[k]
jr $t0 #jump based on $t0

L0: add $s3, $s0, $s1 #k=0 so h=i+j
j Exit

L1: add $s3, $s0, $s3 #k=1 so h=i+h
j Exit

L2: sub $s3, $s0, $s1 #k=2 so h=i-j

Exit: . . .

$t4

L2
L1
L0

Memory

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 15

Chapter 2 — Instructions: Language of the Computer — 46

More Conditional Operations

 Set dest to 1 if a condition is true
 Otherwise, set to 0

 slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;

 slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;

 Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 47

Branch Instruction Design

 Why not blt, bge, etc?

 Hardware for <, ≥, … slower than =, ≠
 Combining with branch involves more work

per instruction, requiring a slower clock

 All instructions penalized!

 beq and bne are the common case

 This is a good design compromise

The University of Adelaide, School of Computer Science 17 September 2014

Chapter 2 — Instructions: Language of the Computer 16

Chapter 2 — Instructions: Language of the Computer — 48

Signed vs. Unsigned

 Signed comparison: slt, slti

 Unsigned comparison: sltu, sltui

 Example
 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt $t0, $s0, $s1 # signed

 –1 < +1  $t0 = 1

 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1  $t0 = 0

