The University of Adelaide, School of Computer Science

| Memory Operand Example 1

| C code:
g = h + A[8];
gin $s1, h in $s2, base address of A in $s3
Compiled MIPS code:

Index 8 requires offset of 32
4 bytes per word

Iw $t0, 32(%$s3) # load word
add $s1,/$s2, |$t0

Chapter 2 — Instructions: Language of the Computer — 18

| Memory Operand Example 2

| C code:
A[12] = h + A[8];
h in $s2, base address of A in $s3
Compiled MIPS code:

Index 8 requires offset of 32

Ilw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 19

Chapter 2 — Instructions: Language of the Computer

17 September 2014

The University of Adelaide, School of Computer Science

| Registers vs. Memory

Registers are faster to access than
memory
Operating on memory data requires loads
and stores

More instructions to be executed
Compiler must use registers for variables
as much as possible

Only spill to memory for less frequently used
variables

Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 20

| Inmediate Operands

Constant data specified in an instruction
addi $s3, $s3, 4
No subtract immediate instruction

Just use a negative constant
addi $s2, $s1, -1

Design Principle 3: Make the common
case fast

Small constants are common

Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 21

Chapter 2 — Instructions: Language of the Computer

17 September 2014

The University of Adelaide, School of Computer Science 17 September 2014

| The Constant Zero

| MIPS register 0 ($zero) is the constant 0
Cannot be overwritten
Useful for common operations

E.g., move between registers
add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 22

| Unsigned Binary Integers

| Given an n-bit number
X=X_ 2"+ x_,2" %+ +x,2"+x,2°

Range: 0 to +2" — 1

Example

0000 0000 0000 0000 0000 0000 0000 1011,
=0+ ...+ 1x23 + (0x22 +1x21 +1x20
=0+..+8+0+2+1=11,

Using 32 bits
0 to +4,294,967,295

Chapter 2 — Instructions: Language of the Computer — 23

Chapter 2 — Instructions: Language of the Computer 3

The University of Adelaide, School of Computer Science 17 September 2014

| 2s-Complement Signed Integers

| Given an n-bit number
X=-X_2""+x 2"+ 4+ x,2"+x,2°

Range: -2"-1to +2"-1-1

Example

1111 1111 1111 1111 1111 1111 1111 1100,
=—1x231 + 1x230 + + 1x22 +Qx21 +0x20
=-2,147,483,648 + 2,147,483,644 = 4,

Using 32 bits
—2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 24

| 2s-Complement Signed Integers

| Bit31 s sign bit
1 for negative numbers
0 for non-negative numbers
—(-=2"-1) can’t be represented

Non-negative numbers have the same unsigned
and 2s-complement representation
Some specific numbers
0: 0000 0000 ... 0000
=1 11111111 1111
Most-negative: 1000 0000 ... 0000
Most-positive: 0111 1111 ... 1111

Chapter 2 — Instructions: Language of the Computer — 25

Chapter 2 — Instructions: Language of the Computer 4

The University of Adelaide, School of Computer Science

| Signed Negation

| Complement and add 1
Complement means 1 — 0,0 — 1

X+x=1111..111, = -1

X+1=-x

Example: negate +2
+2 = 0000 0000 ... 0010,

-2=1111 1111 ... 1101, + 1
=111 111 ... 1110,

Chapter 2 — Instructions: Language of the Computer — 26

2’'sc binary | decimal

| 2’s Complement »-w T s

| (23-1) 1001

I >
1011

complement all the bits 1100

1101

0101 1110

and add a 1
1111

0110 (6) 0000

0001

0010

0011

0100

0101

ola|lsa|lw|v|a|lolhN|blAl&lS N

0110

~

23-1= 0111

Chapter 2 — Instructions: Language of the Computer — 27

Chapter 2 — Instructions: Language of the Computer

17 September 2014

The University of Adelaide, School of Computer Science

| Sign Extension

| Representing a number using more bits
Preserve the numeric value
In MIPS instruction set
addi: extend immediate value
Ib, Ih: extend loaded byte/halfword
beq, bne: extend the displacement
Replicate the sign bit to the left
c.f. unsigned values: extend with Os
Examples: 8-bit to 16-bit
+2: 0000 0010 => 000 0010
-2: 1111 1110 => 111 1110

Chapter 2 — Instructions: Language of the Computer — 28

| Representing Instructions

| Instructions are encoded in binary
Called machine code

MIPS instructions
Encoded as 32-bit instruction words

Small number of formats encoding operation code
(opcode), register numbers, ...

Regularity!

Register numbers
$t0 — $t7 are reg’'s 8 — 15
$t8 — $t9 are reg’s 24 — 25
$s0 — $s7 are reg’s 16 — 23

Chapter 2 — Instructions: Language of the Computer — 29

Chapter 2 — Instructions: Language of the Computer

17 September 2014

The University of Adelaide, School of Computer Science 17 September 2014

| MIPS R-format Instructions

| op | rs | rt | rd |shamt| funct |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Instruction fields
op: operation code (opcode)
rs: first source register number
rt: second source register number
rd: destination register number
shamt: shift amount (00000 for now)
funct: function code (extends opcode)

Chapter 2 — Instructions: Language of the Computer — 30

| R-format Example

| op | rs | rt | rd | shamt | funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

add $t0, $s1, $s2
| special | $s1 /| M $t0 | 0 | add |
v ~

| o | 17 | 18| 8 | o | 32, |

| 000000 | 10001 | 10010 | 01000 | 00000 | 100000 |

[00000010001100100100000000100000}, = 02674020,

Chapter 2 — Instructions: Language of the Computer — 31

Chapter 2 — Instructions: Language of the Computer 7

The University of Adelaide, School of Computer Science 17 September 2014

| Hexadecimal

| Base 16

Compact representation of bit strings
4 bits per hex digit

0 (0000 |4 |0100 (8 [1000 |c (1100
1 10001 |5 |0101 (9 [1001 |d |[1101
2 (0010 |6 (0110 |a (1010 |e [1110
3 (0011 |7 (0111 |b (1011 |f |1111

Example: eca8 6420
1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 32

| MIPS I-format Instructions

| op | rs | rt | constant or address |
6 bits 5 bits 5 bits 16 bits

Immediate arithmetic and load/store instructions
rt: destination -- rs source register number
Constant: =215 to +215 — 1
Address: offset added to base address in rs
Design Principle 4. Good desigh demands
good compromises

Different formats complicate decoding, but allow 32-bit
instructions uniformly

Keep formats as similar as possible

Chapter 2 — Instructions: Language of the Computer — 33

Chapter 2 — Instructions: Language of the Computer 8

The University of Adelaide, School of Computer Science

| MIPS I-format Instructions

| op | rs | rt | constant or address |
6 bits 5 bits 5 bits 16 bits

addi $t0, $sl1, 10

addi	$t0	$s1	constant
8	8	17	10
001000	10000	10001	0000000000001010

Chapter 2 — Instructions: Language of the Computer — 34

| Stored Program Computers

Instructions represented in
binary, just like data

 Memory Instructions and data stored
ety | IN memory
| Editorprogram | Programs can operate on

Processor

(machine code)

St programs

1<r3(ih"ip_ld)___] e.g., compilers, linkers, ...
e || Binary compatibility allows
seeeenanee: compiled programs to work
2§ ondifferent computers

w
o
€
(¢}
@®
[}
Q
Q
®
2
o

Standardized ISAs

Chapter 2 — Instructions: Language of the Computer — 35

Chapter 2 — Instructions: Language of the Computer

17 September 2014

The University of Adelaide, School of Computer Science

| Logical Operations

| Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sl

Shift right >> >>> srl
Bitwise AND & & and, andi
Bitwise OR | | or, ori
Bitwise NOT ~ ~ nor

Useful for extracting and inserting
groups of bits in a word

Chapter 2 — Instructions: Language of the Computer — 36

| Shift Operations
|

L oo | s | n |

rd

|shamt| funct |

6 bits 5 bits 5 bits

Shift left logical
Shift left and fill with O

Shift right logical

5 bits

bits

sl by i bits multiplies by 2’

Shift right and fill with O bits
srl by i bits divides by 2' (unsigned only)

5 bits

shamt: how many positions to shift

Chapter 2 — Instructions: Language of the Computer — 37

6 bits

Chapter 2 — Instructions: Language of the Computer

17 September 2014

10

The University of Adelaide, School of Computer Science

| AND Operations

| Useful to mask bits in a word
Select some bits, clear others to 0

and $t0, $tl1, $t2

$t2 ‘ 0000 0000 0000 0000 0000 1101 1100 0000 ‘

$t1 ‘ 0000 0000 0000 0000 0011 1100 0000 0000 ‘

$to ‘ 0000 0000 0000 0000 0000 1100 0000 0000 ‘

Chapter 2 — Instructions: Language of the Computer — 38

| OR Operations

| Useful to include bits in a word
Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

$t2 ‘ 0000 0000 0000 0000 0000 1101 1100 0000 ‘

$t1 ‘ 0000 0000 0000 0000 0011 1100 0000 0000 ‘

$to ‘ 0000 0000 0000 0000 0011 1101 1100 0000 ‘

Chapter 2 — Instructions: Language of the Computer — 39

Chapter 2 — Instructions: Language of the Computer

17 September 2014

11

The University of Adelaide, School of Computer Science

| NOT Operations

Useful to invert bits in a word
Change Oto1,and 1t0 0

MIPS has NOR 3-operand instruction
aNOR b ==NOT (aORD)

nor $t0, $tl1, $zero

Register 0: always
read as zero

$zero | 0000 0000 0000 0000 0000 OOOO 0000 0000 ‘
$t1 | 0000 0000 0000 0000 0011 1100 0OOOO 0000 ‘

$t0 ‘1111 1111 1111 1111 1100 0011 1111 1111 ‘

Chapter 2 — Instructions: Language of the Computer — 40

| Conditional Operations

Branch to a labeled instruction if a
condition is true

Otherwise, continue sequentially
beq rs, rt, L1

if (rs == rt) branch to instruction labeled L1;
bne rs, rt, L1

if (rs !=rt) branch to instruction labeled L1;
j L1

unconditional jump to instruction labeled L1

Chapter 2 — Instructions: Language of the Computer — 41

Chapter 2 — Instructions: Language of the Computer

17 September 2014

12

The University of Adelaide, School of Computer Science

| Compiling If Statements

| C code:

it (i==j) f = g+h; ‘
else ¥ = g-h; — e
f, g, ...in $s0, $s1, ...
III Lm‘t:l

Compiled MIPS code: I
bne $s§j/éii;/ﬁi;;///////

add $s0, $s1, $s2

3 Exit
Else: sub $s0, $s1, $s2
EXit: o

‘ Assembler calculates addresses ‘

Chapter 2 — Instructions: Language of the Computer — 42

J
f=g-h

| Compiling Loop Statements

| C code:
while (save[i] == k) 1 += 1;

i1in $s3, kin $s5, address of save i>$sG
Compiled MIPS code:

Loop: slIl $tl1l, $s3, 2

ultiply i by 4 \

add $tl, $tl, $s6——| Addressof

W$t0 , 0(%tl) saveli]
2 bne $t0, $s5, Exit

addi $s3, $s3, 1

b Loop
Exit: ..

Chapter 2 — Instructions: Language of the Computer — 43

Chapter 2 — Instructions: Language of the Computer

17 September 2014

13

The University of Adelaide, School of Computer Science

with

| Basic Blocks

| A basic block is a sequence of instructions

No embedded branches (except at end)
No branch targets (except at beginning)

A compiler identifies basic
blocks for optimization

An advanced processor
can accelerate execution
of basic blocks

Chapter 2 — Instructions: Language of the Computer — 44

add
add
add
Iw
Jr
LO: add
J
L1: add
J
L2: sub

Exit:

$t1,
$t1,
$t1,
$to,
$t0

$s3,
Exit
$s3,
Exit
$s3,

| Compiling Case Statement

Memory
switch (k) { _ _
case 0. 'h=i+j; break; /*k=0*/
case h=i+h; break; /*k=1*/ L2
case 2: h=i-j; break; /*k=2*/

. . . L1
Assuming three sequential words in $t4> [0
memory starting at the address in $t4
have the addresses of the labels LO, L1,

and L2 and kis in $s2

$s2, $s2
$t1, $t1
$t1, $t4
o(s$tl)

$s0, $si1
$s0, $s3

$s0, $si1

#$tl = 2*k

#$tl = 4*k

#$tl = addr of JumpT[k]
#$t0 = JumpT[k]

#jump based on $t0
#k=0 so h=i+j

#k=1 so h=i+h

#k=2 so h=i-j

Chapter 2 — Instructions: Language of the Computer — 45

Chapter 2 — Instructions: Language of the Computer

17 September 2014

14

The University of Adelaide, School of Computer Science

| More Conditional Operations

| Set dest to 1 if a condition is true
Otherwise, setto 0
st rd, rs, rt
if (rs<rt)rd =1; else rd = 0;
sltr rt, rs, constant
if (rs < constant) rt = 1; else rt = 0;
Use in combination with beq, bne

slt $t0, $s1, $s2 # if ($sl < $s2)
bne $t0O, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 46

| Branch Instruction Design

| Why not bIt, bge, etc?
Hardware for <, 2, ... slower than =, #

Combining with branch involves more work
per instruction, requiring a slower clock

All instructions penalized!
beqg and bne are the common case

This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 47

Chapter 2 — Instructions: Language of the Computer

17 September 2014

15

The University of Adelaide, School of Computer Science 17 September 2014

| Signed vs. Unsigned

| Signed comparison: slt, slti
Unsigned comparison: sltu, sltui

Example
$s0 = 11111111 1111 1111 1111 1111 1111 1111
$s1 = 0000 0000 0000 0000 0000 0000 0000 0001
slt $t0, $s0, $s1 # signed
-1<+1=%t0=1
sltu $t0, $s0, $s1 # unsigned
+4,294,967,295 > +1 = $t0=0

Chapter 2 — Instructions: Language of the Computer — 48

Chapter 2 — Instructions: Language of the Computer 16

