The University of Adelaide, School of Computer Science 24 September 2014

| Procedure Calling

| Steps required

Place parameters in a place where the
procedure can access them

Transfer control to procedure
Acquire storage (resources) for procedure
Perform procedure’s operations

Place result in a place where the caller can
access them.

Return to place of call

Chapter 2 — Instructions: Language of the Computer — 50

| Register Usage

| $a0 — $a3: arguments (reg’'s 4 — 7)
$vO0, $v1: result values (reg’s 2 and 3)

$t0 — $t9: temporaries
Can be overwritten by callee

$s0 — $s7: saved
Must be saved/restored by callee

$gp: global pointer for static data (reg 28)
$sp: stack pointer (reg 29)

$fp: frame pointer (reg 30)

$ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 51

Chapter 2 — Instructions: Language of the Computer 1

The University of Adelaide, School of Computer Science

| Procedure Call Instructions

| Procedure call: jump and link
jal ProcedurelLabel
Address of following instruction put in $ra
Jumps to target address
Procedure return: jump register
Jjr $ra
Copies $ra to program counter

Can also be used for computed jumps
e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 52

| Leaf Procedure Example

| C code:

int leaf_example (int g, h, 1, })
{ int T;

fF=(@+h) -+]J);

return T;
+

Arguments g, ...,jin $

mmm) = f in (hence, need to save $s0 on stack)
Result in
Will need 510, and in the calculation of ¥

Chapter 2 — Instructions: Language of the Computer — 53

Chapter 2 — Instructions: Language of the Computer

24 September 2014

The University of Adelaide, School of Computer Science

| Stack

e best way to store registers is a stac
| The best way to st isters | K
A stack is a first-in-last-out data structure

Stack pointer points to the last element in
the stack (or the first empty place).

Traditionally stack grows from higher to
lower addresses

used

The stack
The stack after pushing $t1 $t0 and $s0

used

empty

$t1
$t0

$sp

$s0

empty

Chapter 2 — Instructions: Language of the Computer — 54

| Procedure Call

| int leaf_example (int g, h, i, J)
{ int T;
F=(@+h) -G+ J);
return T;
}

leaf_example:

addi $sp, $sp, -12

sw $t1, 8($sp)

sw $t0, 4($sp) 7?
sw $s0, 0($sp)

\

Save registers

Chapter 2 — Instructions: Language of the Computer — 55

Chapter 2 — Instructions: Language of the Computer

24 September 2014

The University of Adelaide, School of Computer Science

| add
add
sub

add

w

add
sub
addi

jr

$t0, $a0, %al
$tl, $a2, %$a3
$s0, $t0, $t1

$v0, $s0, $zero

$s0, 0($sp)
$t0, 4($sp)
$tl, 8($sp)
$sp, $sp, 12

$ra

| Procedure Call

o Do calculation

\
put result in $v0

\ Clean up (remove data

from the stack)

I

Return control to caller

Chapter 2 — Instructions: Language of the Computer — 56

| Leaf Procedure Example

MIPS code:

leaf example:
addi $sp, $sp, -4
SW $SO , O($Sp) Save $s0 on stack
add $tO, $a0, $al
add $t1, $a2, $a3 Procedure body
sub $s0, $t0, $t1l
add $vO, $sO0, $zero | Result
Ju $SO ? O($Sp) Restore $s0
addi $sp, $sp, 4
j r $ra Return

Chapter 2 — Instructions: Language of the Computer — 57

Chapter 2 — Instructions: Language of the Computer

24 September 2014

24 September 2014

The University of Adelaide, School of Computer Science

| Non-Leaf Procedures

Procedures that call other procedures
For nested call, caller needs to save on the
stack:

Its return address
Any arguments and temporaries needed after

the call
Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 58

| Non-Leaf Procedure Example

| C code:
int fact (int n)

{

iIT (n < 1) return T;
else return n * fact(n - 1);

Argument n in $a0
Result in $v0

Chapter 2 — Instructions: Language of the Computer — 59

Chapter 2 — Instructions: Language of the Computer

The University of Adelaide, School of Computer Science

| Non-Leaf Procedure Example

| MIPS code:

fact:
addi $sp, $sp, -8
sw S$ra, 4($sp)
sw $a0, 0($sp)
slti $t0, %a0, 1
beq $t0, $zero, L1

adjust stack for 2 items
save return address

save argument

test for n < 1

HF|H H H*

addi $v0, S$zero, 1 if so, result is 1
addi $sp, $sp, 8 pop 2 items from stack
jr S$ra and return
L1: addi $a0, $a0, -1 else decrement n
jal fact recursive call

Ilw $a0, 0($sp)
Iw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0, $al0, $vO
Jjr $ra

restore original n

and return address
pop 2 items from stack
multiply to get result
and return

| [H H|H O H R

Chapter 2 — Instructions: Language of the Computer — 60

| Local Data on the Stack

| High address
$fp— $fp—
$sp— $sp—

¥~ | saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and

$sp— structures (if any)

Low address
a b .

Local data allocated by callee
e.g., C automatic variables
Procedure frame (activation record)
Used by some compilers to manage stack storage

Fixed, does not change during the function execution
A stable base register to address for local memory reference

Chapter 2 — Instructions: Language of the Computer — 61

Chapter 2 — Instructions: Language of the Computer

24 September 2014

The University of Adelaide, School of Computer Science

| Memory Layout

| Text: program code
Static data: global
variables

e.g., static variables in C,
constant arrays and strings

$gp initialized to address

$sp—+ TFFF FFfCyay T

Dynamic data

$gp— 1000 8000}, Static data

allowing zoffsets into this 1000 0000y, —

Segment pc— 0040 00000, S
Dynamic data: heap "

E.g., mallocin C, new in

Java

Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 62

| Character Data

| Byte-encoded character sets

ASCII: 128 characters
95 graphic, 33 control

Latin-1: 256 characters
ASCII, +96 more graphic characters

Unicode: 32-bit character set
Used in Java, C++ wide characters, ...
Most of the world’s alphabets, plus symbols
UTF-8, UTF-16: variable-length encodings

Chapter 2 — Instructions: Language of the Computer — 63

Chapter 2 — Instructions: Language of the Computer

24 September 2014

The University of Adelaide, School of Computer Science

| String Copy Example

{ int
i =

}

i;
0;

| C code (naive):
Null-terminated string
void strcpy (char x[], char y[])

while ((X[il=yL[i])!="\0")
1 += 1;

Addresses of x, y in $a0, $a1
iin $s0

Chapter 2 — Instructions: Language of the Computer — 64

| String Copy Example
| MIPS code:
strcpy:
addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i = 0
L1: add $t1, $sO, $al # addr of y[i] in $t1
lbu $t2, 0($tl) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] ==
addi $s0, $s0, 1 #1 =1+ 1
J L1 # next iteration of loop
L2: Iw $s0, O($sp) # restore saved $s0O
addi $sp, $sp, 4 # pop 1 item from stack
jr $ra # and return
Chapter 2 — Instructions: Language of the Computer — 65

Chapter 2 — Instructions: Language of the Computer

24 September 2014

The University of Adelaide, School of Computer Science 24 September 2014

| 32-bit Constants

| Most constants are small
16-bit immediate is sufficient
For the occasional 32-bit constant
lul rt, constant

Copies 16-bit constant to left 16 bits of rt
Clears right 16 bits of rt to O

lui $sO, 61 0000 0000 0111 11010000 0000 0000 0000 |

ori $s0, $s0, 2304 ‘0000 0000 0111 1101 ‘0000 1001 0000 0000 ‘
Zero extended

Chapter 2 — Instructions: Language of the Computer — 66

| Branch Addressing

| Branch instructions specify
Opcode, two registers, target address

Most branch targets are near branch
Forward or backward

| op | rs | rt | constant or address |
6 bits 5 bits 5 bits 16 bits

PC-relative addressing
Target address = PC + offset x 4
PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 67

Chapter 2 — Instructions: Language of the Computer 9

The University of Adelaide, School of Computer Science

| Jump Addressing

| Jump (J and jal) targets could be
anywhere in text segment
Encode full address in instruction

| op | address
6 bits 26 bits

(Pseudo)Direct jump addressing
Target address = PC5, ,g5: (address x 4)

Chapter 2 — Instructions: Language of the Computer — 68

| Target Addressing Example

| Loop code from earlier example
Assume Loop at location 80000

Loop: sl $t1, $s3, 2 80000 | O 0 |19] 9 4 0
add $tl, $tl, $s6 80004 |- 0 9 |22 9 0 | 32
Iw $t0, 0($tl) 80008 | 35+ 9 8 0
bne $t0, $s5, Exit 80012 | 5 8 | 21 2
addi $s3, $s3, 1 80016 | 8 | 19 |19 1
J Loop 80020 | 2 20000

Exit: .. 80024

Chapter 2 — Instructions: Language of the Computer — 69

Chapter 2 — Instructions: Language of the Computer

24 September 2014

10

The University of Adelaide, School of Computer Science

| Branching Far Away

| If branch target is too far to encode with
16-bit offset, assembler rewrites the code

Example
beq $s0,%$s1, L1
!
bne $s0,%$sl1l, L2
j L1
L2:

Chapter 2 — Instructions: Language of the Computer — 70

| Addressing Mode Summary

| 1. Immediate addressing

(oo = [[imeeiin]

2. Register addressing

op|rs |t |rd|...func Registers

I [Register
3. Base addressing
(en [[] mass |
Register ° B Word

4. PC-relative addressing
Memory

[l ln] row]
‘ PC | () Word

5. Pseudodirect addressing

(o] o]
[PC | () Word

Chapter 2 — Instructions: Language of the Computer — 71

Chapter 2 — Instructions: Language of the Computer

24 September 2014

11

The University of Adelaide, School of Computer Science 24 September 2014

| Synchronization

| Two processors sharing an area of memory
P1 writes, then P2 reads
Data race if P1 and P2 don’t synchronize
Result depends of order of accesses

Hardware support required
Atomic read/write memory operation
No other access to the location allowed between the
read and write

Could be a single instruction
E.g., atomic swap of register & memory
Or an atomic pair of instructions

Chapter 2 — Instructions: Language of the Computer — 72

| Synchronization in MIPS

| Load linked: 11 rt, offset(rs)

Store conditional: sc rt, offset(rs)
Succeeds if location not changed since the 11
Returns 1 in rt

Fails if location is changed
Returns O in rt $S0 <> memory Location

Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value
Il $t1,0($sl1) ;load linked
sc $t0,0($sl) ;store conditional
beq $t0,%$zero,try ;branch store fails
add $s4,%zero,$tl ;put load value in $s4

Chapter 2 — Instructions: Language of the Computer — 73

Chapter 2 — Instructions: Language of the Computer 12

