
The University of Adelaide, School of Computer Science 24 September 2014

Chapter 2 — Instructions: Language of the Computer 1

Chapter 2 — Instructions: Language of the Computer — 50

Procedure Calling

 Steps required
1. Place parameters in a place where the

procedure can access them

2. Transfer control to procedure

3. Acquire storage (resources) for procedure

4. Perform procedure’s operations

5. Place result in a place where the caller can
access them.

6. Return to place of call

§2.8 S
upporting P

rocedures in C
om

puter H
ardw

are

Chapter 2 — Instructions: Language of the Computer — 51

Register Usage
 $a0 – $a3: arguments (reg’s 4 – 7)
 $v0, $v1: result values (reg’s 2 and 3)
 $t0 – $t9: temporaries

 Can be overwritten by callee

 $s0 – $s7: saved
 Must be saved/restored by callee

 $gp: global pointer for static data (reg 28)
 $sp: stack pointer (reg 29)
 $fp: frame pointer (reg 30)
 $ra: return address (reg 31)

The University of Adelaide, School of Computer Science 24 September 2014

Chapter 2 — Instructions: Language of the Computer 2

Chapter 2 — Instructions: Language of the Computer — 52

Procedure Call Instructions

 Procedure call: jump and link
jal ProcedureLabel

 Address of following instruction put in $ra

 Jumps to target address

 Procedure return: jump register
jr $ra

 Copies $ra to program counter

 Can also be used for computed jumps
 e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 53

Leaf Procedure Example

 C code:
int leaf_example (int g, h, i, j)
{ int f;
f = (g + h) - (i + j);
return f;

}

 Arguments g, …, j in $a0, …, $a3

 f in $s0 (hence, need to save $s0 on stack)

 Result in $v0

 Will need $t0, and $t1 in the calculation of f

The University of Adelaide, School of Computer Science 24 September 2014

Chapter 2 — Instructions: Language of the Computer 3

Stack

 The best way to store registers is a stack

 A stack is a first-in-last-out data structure

 Stack pointer points to the last element in
the stack (or the first empty place).

 Traditionally stack grows from higher to
lower addresses

Chapter 2 — Instructions: Language of the Computer — 54

used

empty

$sp used

$t1

$sp
$t0

empty

The stack
The stack after pushing $t1 $t0 and $s0

$s0

Procedure Call

Chapter 2 — Instructions: Language of the Computer — 55

int leaf_example (int g, h, i, j)
{ int f;

f = (g + h) - (i + j);
return f;

}

leaf_example:
addi $sp, $sp, -12#adjust stack to make room for 3 items
sw $t1, 8($sp) # push $t1
sw $t0, 4($sp) # push $t0
sw $s0, 0($sp) # push $s0

Save registers

??

The University of Adelaide, School of Computer Science 24 September 2014

Chapter 2 — Instructions: Language of the Computer 4

Procedure Call

Chapter 2 — Instructions: Language of the Computer — 56

add $t0, $a0, $a1 #$t0 = g+h
add $t1, $a2, $a3 #$t1 = i+j
sub $s0, $t0, $t1 #$s0 = (g+h)-(i+j)

add $v0, $s0, $zero #put the result in $v0

lw $s0, 0($sp) #restore $s0
add $t0, 4($sp) #restore $t0
sub $t1, 8($sp) #restore $t1
addi $sp, $sp, 12 #restore $sp

jr $ra #jump back to the calling routing

Do calculation

put result in $v0

Clean up (remove data
from the stack)

Return control to caller

Chapter 2 — Instructions: Language of the Computer — 57

Leaf Procedure Example

 MIPS code:
leaf_example:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

The University of Adelaide, School of Computer Science 24 September 2014

Chapter 2 — Instructions: Language of the Computer 5

Chapter 2 — Instructions: Language of the Computer — 58

Non-Leaf Procedures

 Procedures that call other procedures

 For nested call, caller needs to save on the
stack:
 Its return address

 Any arguments and temporaries needed after
the call

 Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 59

Non-Leaf Procedure Example

 C code:
int fact (int n)
{
if (n < 1) return f;
else return n * fact(n - 1);

}

 Argument n in $a0

 Result in $v0

The University of Adelaide, School of Computer Science 24 September 2014

Chapter 2 — Instructions: Language of the Computer 6

Chapter 2 — Instructions: Language of the Computer — 60

Non-Leaf Procedure Example

 MIPS code:
fact:

addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # save argument
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $v0 # multiply to get result
jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 61

Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage
 Fixed, does not change during the function execution
 A stable base register to address for local memory reference

The University of Adelaide, School of Computer Science 24 September 2014

Chapter 2 — Instructions: Language of the Computer 7

Chapter 2 — Instructions: Language of the Computer — 62

Memory Layout
 Text: program code
 Static data: global

variables
 e.g., static variables in C,

constant arrays and strings
 $gp initialized to address

allowing ±offsets into this
segment

 Dynamic data: heap
 E.g., malloc in C, new in

Java

 Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 63

Character Data

 Byte-encoded character sets
 ASCII: 128 characters

 95 graphic, 33 control

 Latin-1: 256 characters
 ASCII, +96 more graphic characters

 Unicode: 32-bit character set
 Used in Java, C++ wide characters, …

 Most of the world’s alphabets, plus symbols

 UTF-8, UTF-16: variable-length encodings

§2.9 C
om

m
unicating w

ith P
eople

The University of Adelaide, School of Computer Science 24 September 2014

Chapter 2 — Instructions: Language of the Computer 8

Chapter 2 — Instructions: Language of the Computer — 64

String Copy Example

 C code (naïve):
 Null-terminated string

void strcpy (char x[], char y[])
{ int i;
i = 0;
while ((x[i]=y[i])!='\0')
i += 1;

}

 Addresses of x, y in $a0, $a1

 i in $s0

Chapter 2 — Instructions: Language of the Computer — 65

String Copy Example

 MIPS code:
strcpy:

addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i = 0

L1: add $t1, $s0, $a1 # addr of y[i] in $t1
lbu $t2, 0($t1) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] == 0
addi $s0, $s0, 1 # i = i + 1
j L1 # next iteration of loop

L2: lw $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
jr $ra # and return

The University of Adelaide, School of Computer Science 24 September 2014

Chapter 2 — Instructions: Language of the Computer 9

Chapter 2 — Instructions: Language of the Computer — 66

0000 0000 0111 1101 0000 0000 0000 0000

32-bit Constants

 Most constants are small
 16-bit immediate is sufficient

 For the occasional 32-bit constant

lui rt, constant

 Copies 16-bit constant to left 16 bits of rt

 Clears right 16 bits of rt to 0

lui $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000ori $s0, $s0, 2304

§2.10 M
IP

S
 A

ddressing for 32-B
it Im

m
ediates and A

ddressesZero extended

Chapter 2 — Instructions: Language of the Computer — 67

Branch Addressing

 Branch instructions specify
 Opcode, two registers, target address

 Most branch targets are near branch
 Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

 PC-relative addressing
 Target address = PC + offset × 4

 PC already incremented by 4 by this time

The University of Adelaide, School of Computer Science 24 September 2014

Chapter 2 — Instructions: Language of the Computer 10

Chapter 2 — Instructions: Language of the Computer — 68

Jump Addressing

 Jump (j and jal) targets could be
anywhere in text segment
 Encode full address in instruction

op address

6 bits 26 bits

 (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)

Chapter 2 — Instructions: Language of the Computer — 69

Target Addressing Example

 Loop code from earlier example
 Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024

The University of Adelaide, School of Computer Science 24 September 2014

Chapter 2 — Instructions: Language of the Computer 11

Chapter 2 — Instructions: Language of the Computer — 70

Branching Far Away

 If branch target is too far to encode with
16-bit offset, assembler rewrites the code

 Example
beq $s0,$s1, L1

↓

bne $s0,$s1, L2
j L1

L2: …

Chapter 2 — Instructions: Language of the Computer — 71

Addressing Mode Summary

The University of Adelaide, School of Computer Science 24 September 2014

Chapter 2 — Instructions: Language of the Computer 12

Chapter 2 — Instructions: Language of the Computer — 72

Synchronization

 Two processors sharing an area of memory
 P1 writes, then P2 reads

 Data race if P1 and P2 don’t synchronize
 Result depends of order of accesses

 Hardware support required
 Atomic read/write memory operation

 No other access to the location allowed between the
read and write

 Could be a single instruction
 E.g., atomic swap of register ↔ memory

 Or an atomic pair of instructions

§2.11 P
arallelism

 and Instructions: S
ynchronization

Chapter 2 — Instructions: Language of the Computer — 73

Synchronization in MIPS
 Load linked: ll rt, offset(rs)

 Store conditional: sc rt, offset(rs)
 Succeeds if location not changed since the ll

 Returns 1 in rt

 Fails if location is changed
 Returns 0 in rt

 Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value

ll $t1,0($s1) ;load linked

sc $t0,0($s1) ;store conditional

beq $t0,$zero,try ;branch store fails

add $s4,$zero,$t1 ;put load value in $s4

$S0 memory Location

