
The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 1

Chapter 2 — Instructions: Language of the Computer — 74

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.12 T
ranslating and S

tarting a P
rogram

Compiler

 Transforms HLL C programs into assembly

 Why HLL
 Fewer lines of code

 Easier to understand and debug

 Today’s optimizing compilers can produce
assembly code nearly as good as an
assembly language programming expert
and often better for large programs

Chapter 2 — Instructions: Language of the Computer — 75

The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 2

Chapter 2 — Instructions: Language of the Computer — 76

Assembler Pseudoinstructions

 Syntax check

 Most assembler instructions represent
machine instructions one-to-one

 Pseudoinstructions: figments of the
assembler’s imagination
move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1

bne $at, $zero, L

 $at (register 1): assembler temporary

Other Assembler’s Tasks

 Converts pseudo-instr’s to legal assembly code

 Converts branches to far away locations into a
branch followed by a jump

 Converts instructions with large immediates into
a lui followed by an ori

 Converts numbers specified in decimal and
hexadecimal into their binary equivalents and
characters into their ASCII equivalents

 Deals with data layout directives (e.g., .asciiz)

 Expands macros (frequently used sequences of
instructions)

Chapter 2 — Instructions: Language of the Computer — 77

The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 3

Chapter 2 — Instructions: Language of the Computer — 78

Producing an Object Module
 Assembler (or compiler) translates program into

machine instructions
 Provides information for building a complete

program from the pieces
 Header: described contents of object module
 Text segment: translated instructions
 Static data segment: data allocated for the life of the

program
 Relocation info: for contents that depend on absolute

location of loaded program
 On MIPS, j, and jal, also lw $t1, 100($zero)

 Symbol table: global definitions and external refs
 Debug info: for associating with source code

MIPS (spim) memory Allocation

Chapter 2 — Instructions: Language of the Computer — 79

230

words

0000 0000

f f f f f f f c

Text
Segment

Reserved

Static data

Mem Map I/O

0040 0000

1000 0000
1000 8000

7f f f f f fc
Stack

Dynamic data

$sp

$gp

PC

Kernel Code
& Data

The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 4

Example

Chapter 2 — Instructions: Language of the Computer — 80

.data

.align 0
str: .asciiz "The answer is "
cr: .asciiz "\n"

.text

.align 2

.globl main

.globl printf
main: ori $2, $0, 5

syscall
move $8, $2

loop: beq $8, $9, done
blt $8, $9, brnc
sub $8, $8, $9
j loop

brnc: sub $9, $9, $8
j loop

done: jal printf

Gbl? Symbol Address

str 1000 0000

cr 1000 000b

yes main 0040 0000

loop 0040 000c

brnc 0040 001c

done 0040 0024

yes printf ???? ????

Relocation Info

Address Data/Instr

1000 0000 str

1000 000b cr

0040 0018 j loop

0040 0020 j loop

0040 0024 jal printf

0040 0000
0040 0004

0040 0008

0040 000c

0040 0010

0040 0014

0040 0018

0040 001c

Chapter 2 — Instructions: Language of the Computer — 81

Linking Object Modules

 Produces an executable image
1. Merges segments

2. Resolve labels (determine their addresses)

3. Patch location-dependent and external refs

 Could leave location dependencies for
fixing by a relocating loader
 But with virtual memory, no need to do this

 Program can be loaded into absolute location
in virtual memory space

The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 5

Linking Two Object Files

Chapter 2 — Instructions: Language of the Computer — 82

H
dr

 T

xt
se

g

D
se

g

R

el
oc

S

m
tb

l
D

bg

File 1

H
dr

 T
xt

se
g

 D
se

g

 R
el

oc
 S

m
tb

l
D

bg

File 2

+

Executable

H
dr

 T

xt
se

g

D
se

g

R

el
oc

Chapter 2 — Instructions: Language of the Computer — 83

Loading a Program

 Load from image file on disk into memory
1. Read header to determine segment sizes

2. Create virtual address space

3. Copy text and initialized data into memory
 Or set page table entries so they can be faulted in

4. Set up arguments on stack

5. Initialize registers (including $sp, $fp, $gp)

6. Jump to startup routine
 Copies arguments to $a0, … and calls main

 When main returns, do exit syscall

The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 6

Chapter 2 — Instructions: Language of the Computer — 84

Dynamic Linking
 Statically linking libraries mean that the library becomes

part of the executable code
 It loads the whole library even if only a small part is used (e.g.,

standard C library is 2.5 MB)

 What if a new version of the library is released ?

 (Lazy) dynamically linked libraries (DLL) – library
routines are not linked and loaded until a routine is called
during execution
 The first time the library routine called, a dynamic linker-loader

must
 find the desired routine, remap it, and “link” it to the calling routine

(see book for more details)

 DLLs require extra space for dynamic linking information, but do
not require the whole library to be copied or linked

Chapter 2 — Instructions: Language of the Computer — 85

ARM & MIPS Similarities
 ARM: the most popular embedded core
 Similar basic set of instructions to MIPS

§2.16 R
eal S

tuff: A
R

M
 Instructions

ARM MIPS

Date announced 1985 1985

Instruction size 32 bits 32 bits

Address space 32-bit flat 32-bit flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Registers 15 × 32-bit 31 × 32-bit

Input/output Memory
mapped

Memory
mapped

The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 7

ARM Addressing Modes
Addressing Mode ARM MIPS

Register operand X X

Immediate operand X x

Register + offset X x

Register + register (indexed) X --

Register + scaled register (scaled) X --

Register + offset and update register X --

Register + register and update register X --

Autoincrement, autodecrement X --

PC-relative data x --

Chapter 2 — Instructions: Language of the Computer — 86

Chapter 2 — Instructions: Language of the Computer — 87

Compare and Branch in ARM

 Uses condition codes for result of an
arithmetic/logical instruction
 Negative, zero, carry, overflow

 Compare instructions to set condition codes
without keeping the result

 Each instruction can be conditional
 Top 4 bits of instruction word: condition value

 Can avoid branches over single instructions

The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 8

Conditional Execution
Unconditional
gcd CMP r0, r1

BEQ end

BLT less

SUBS r0, r0, r1 ;

B gcd

less

SUBS r1, r1, r0 ;

B gcd

end

Conditional
gcd

CMP r0, r1

SUBGT r0, r0, r1

SUBLE r1, r1, r0

BNE gcd

Chapter 2 — Instructions: Language of the Computer — 88

int gcd(int a, int b)
{
while (a != b) {

if (a > b) a = a -
b;

else b = b - a;
}

return a;
}

Chapter 2 — Instructions: Language of the Computer — 89

Instruction Encoding

The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 9

Chapter 2 — Instructions: Language of the Computer — 90

The Intel x86 ISA

 Evolution with backward compatibility
 8080 (1974): 8-bit microprocessor

 Accumulator, plus 3 index-register pairs

 8086 (1978): 16-bit extension to 8080
 Complex instruction set (CISC)

 8087 (1980): floating-point coprocessor
 Adds FP instructions and register stack

 80286 (1982): 24-bit addresses, MMU
 Segmented memory mapping and protection

 80386 (1985): 32-bit extension (now IA-32)
 Additional addressing modes and operations

 Paged memory mapping as well as segments

§2.17 R
eal S

tuff: x86 Instructions

Chapter 2 — Instructions: Language of the Computer — 91

The Intel x86 ISA
 Further evolution…

 i486 (1989): pipelined, on-chip caches and FPU
 Compatible competitors: AMD, Cyrix, …

 Pentium (1993): superscalar, 64-bit datapath
 Later versions added MMX (Multi-Media eXtension)

instructions
 The infamous FDIV bug

 Pentium Pro (1995), Pentium II (1997)
 New microarchitecture (see Colwell, The Pentium Chronicles)

 Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and associated

registers

 Pentium 4 (2001)
 New microarchitecture
 Added SSE2 instructions

The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 10

Chapter 2 — Instructions: Language of the Computer — 92

The Intel x86 ISA
 And further…

 AMD64 (2003): extended architecture to 64 bits
 EM64T – Extended Memory 64 Technology (2004)

 AMD64 adopted by Intel (with refinements)
 Added SSE3 instructions

 Intel Core (2006)
 Added SSE4 instructions, virtual machine support

 AMD64 (announced 2007): SSE5 instructions
 Intel declined to follow, instead…

 Advanced Vector Extension (announced 2008)
 Longer SSE registers, more instructions

 If Intel didn’t extend with compatibility, its
competitors would!
 Technical elegance ≠ market success

The Intel x86 ISA

 SSE5 announced by AMD in 2007
 170 instructions

 Adds three operand instructions

 Intel ships the Advanced Vector Extension
in 2011
 Expands he SSE registers from 128 to 256

 128 new instructions

Chapter 2 — Instructions: Language of the Computer — 93

The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 11

Chapter 2 — Instructions: Language of the Computer — 94

Basic x86 Registers

Chapter 2 — Instructions: Language of the Computer — 95

Basic x86 Addressing Modes

 Two operands per instruction
Source/dest operand Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

 Memory addressing modes
 Address in register

 Address = Rbase + displacement

 Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)

 Address = Rbase + 2scale × Rindex + displacement

The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 12

Chapter 2 — Instructions: Language of the Computer — 96

x86 Instruction Encoding

 Variable length
encoding
 Postfix bytes specify

addressing mode

 Prefix bytes modify
operation
 Operand length,

repetition, locking, …

Chapter 2 — Instructions: Language of the Computer — 97

Implementing IA-32

 Complex instruction set makes
implementation difficult
 Hardware translates instructions to simpler

microoperations
 Simple instructions: 1–1

 Complex instructions: 1–many

 Microengine similar to RISC

 Market share makes this economically viable

 Comparable performance to RISC
 Compilers avoid complex instructions

The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 13

Chapter 2 — Instructions: Language of the Computer — 98

Fallacies

 Powerful instruction higher performance
 Fewer instructions required

 But complex instructions are hard to implement
 May slow down all instructions, including simple ones

 Compilers are good at making fast code from simple
instructions

 Use assembly code for high performance
 But modern compilers are better at dealing with

modern processors

 More lines of code more errors and less
productivity

§2.18 F
allacies and P

itfalls

Chapter 2 — Instructions: Language of the Computer — 99

Fallacies

 Backward compatibility instruction set
doesn’t change
 But they do accrete more instructions

x86 instruction set

The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 14

Chapter 2 — Instructions: Language of the Computer — 100

Pitfalls

 Sequential words are not at sequential
addresses
 Increment by 4, not by 1!

 Keeping a pointer to an automatic variable
after procedure returns
 e.g., passing pointer back via an argument

 Pointer becomes invalid when stack popped

Chapter 2 — Instructions: Language of the Computer — 101

Concluding Remarks

 Design principles
1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises

 Layers of software/hardware
 Compiler, assembler, hardware

 MIPS: typical of RISC ISAs
 c.f. x86

§2.19 C
oncluding R

em
arks

The University of Adelaide, School of Computer Science 8 October 2014

Chapter 2 — Instructions: Language of the Computer 15

Chapter 2 — Instructions: Language of the Computer — 102

Concluding Remarks

 Measure MIPS instruction executions in
benchmark programs
 Consider making the common case fast
 Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP

Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu,
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
ori, sll, srl

12% 4%

Cond. Branch beq, bne, slt,
slti, sltiu

34% 8%

Jump j, jr, jal 2% 0%

