Chapter Objective

- Understanding phasor concept and be able to perform phasor transform and inverse phasor transform.
- Be able to transform a circuit with sinusoidal source into the frequency domain using phasor transform
- Know how to use circuits analysis techniques to solve circuits in the frequency domain.
- Be able to use phasor in analyzing circuits with ideal transformers.

Figure 9.1 A sinusoidal voltage.

Figure 9.2 The sinusoidal voltage from Fig. 9.1 shifted to the right when $\phi=0$.

Figure 9.3 Periodic triangular current.

Figure 9.4 i^{2} versus t .

$$
\begin{aligned}
& L \frac{d i}{d t}+i R=V_{m} \cos (\omega t+\phi) \\
& i=\frac{-V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \cos (\phi-\theta) e^{-(R / L) t}+\frac{V_{m}}{\sqrt{R^{2}+\omega^{2} L^{2}}} \cos (\omega t+\phi-\theta)
\end{aligned}
$$

RMS Values

- Why RMS

$$
\begin{aligned}
& V_{r m s}=\sqrt{\frac{1^{t_{0}+T}}{T} \int_{t_{0}}^{2} V_{m}^{2} \cos ^{2}(\omega t+\phi) d t} \\
& V_{r m s}=\frac{V_{m}}{\sqrt{2}}
\end{aligned}
$$

The Phasor

- The phasor is a complex number that carries the amplitude and phase angle information of a sinusoidal function.
- Euler's identity $e^{ \pm j \theta}=\cos \theta \pm j \sin \theta$

$$
\left.\begin{array}{rl}
\cos \theta=\mathfrak{R}\left\{e^{j \theta}\right\} \\
\sin \theta=\mathfrak{I}\left\{e^{j \theta}\right\}
\end{array} \quad \begin{array}{l}
\nu=V_{m} \cos (\omega t+\phi) \\
v=\mathfrak{R}\left\{V_{m} e^{j \phi} e^{j \omega t}\right\}
\end{array}\right] \begin{array}{ll}
& A e^{j \phi}=A \angle \phi^{\circ}
\end{array}
$$

$$
\text { The inductor } \quad \begin{aligned}
v & =L \frac{d i}{d t} \\
v & =V_{m} \cos (\omega t) \\
d i & =\frac{1}{L} V_{m} \cos (\omega t) d t \\
i & =\frac{1}{L} V_{m} \int \cos (\omega t) d t \\
i & =\frac{V_{m}}{\omega L} \sin (\omega t)=\frac{V_{m}}{\omega L} \cos \left(\omega t-\frac{\pi}{2}\right) \\
I & =\frac{V_{m}}{\omega L} e^{-j \pi / 2}=\frac{V_{m}}{\omega L} \angle-\pi / 2 \\
Z & =\frac{v}{i}=\omega L \angle \pi / 2=j w L
\end{aligned}
$$

A plot showing the phase relationship between the current and voltage at the terminals of an inductor

Current lags the voltage by 90°

The Capacitor

$$
\begin{aligned}
& i=C \frac{d v}{d t} \\
& v=V_{m} \cos (\omega t) \\
& i=C V_{m} \frac{d}{d t} \cos (\omega t) \\
& i=-C \omega V_{m} \sin (\omega t)=\omega C V_{m} \cos \left(\omega t+\frac{\pi}{2}\right) \\
& I=\omega C V_{m} e^{j \pi / 2}=\omega C V_{m} \angle \pi / 2 \\
& Z=\frac{v}{i}=\frac{1}{\omega C} \angle-\pi / 2=\frac{-j}{\omega C}=\frac{1}{j \omega C}
\end{aligned}
$$

A plot showing the phase relationship between the current and voltage at the terminals of a capacitor

Current leads the voltage by 90°

Adding Complex Numbers

Multiplication

$$
\begin{array}{ll}
& \begin{array}{c}
x_{1}+j y_{1} \\
x_{2}+j y_{2}
\end{array} \\
\times------- \\
& \mathrm{A}_{1} \angle \theta_{1} \times \mathrm{A}_{2} \angle \theta_{2}=\mathrm{A}_{1} \mathrm{~A}_{2} \angle \theta_{1}+\theta_{1} \\
\left(x_{1} x_{2}-y_{1} y_{2}\right)+j\left(x_{1} y_{2}+x_{2}+y_{1}\right) &
\end{array}
$$

TABLE 9.1 Impedance and Reactance Values

Circuit Element	Impedance	Reactance
Resistor	R	-
Inductor	$j \omega L$	ωL
Capacitor	$j(-1 / \omega C)$	$-1 / \omega C$

Figure 9.14 Impedances in series.

Figure 9.15 The circuit for Example 9.6.
$v_{s}=700 \cos \left(5000 t+30^{\circ}\right)$

Figure 9.16 The frequency-domain equivalent circuit of the circuit shown in Fig. 9.15.

TABLE 9.2 Admittance and Susceptance Values

Circuit Element	Admittance (Y)	Susceptance
Resistor	G (conductance)	-
Inductor	$j(-1 / \omega L)$	$-1 / \omega L$
Capacitor	$j \omega C$	ωC

Figure 9.17 Impedances in parallel.

Example

$i_{s}=8 \cos 200,000 t$

Example

Figure 9.20 The delta-to-wye transformation

Figure 9.21 The circuit for Example 9.8.

Figure 9.22 The circuit shown in Fig. 9.21, with the lower delta replaced by its equivalent wye

Figure 9.23 A simplified version of the circuit shown in Fig. 9.22.

Figure 9.24 A source transformation in the frequency domain.

Figure 9.25 The frequency-domain version of a Thévenin equivalent circuit.

Figure 9.26 The frequency-domain version of a Norton equivalent circuit

Figure 9.30 The circuit for Example 9.10

Figure 9.31 A simplified version of the circuit shown in Fig. 9.30.

Figure 9.32 A circuit for calculating the Thévenin equivalent impedance.

Figure 9.33 The Thévenin equivalent for the circuit shown in Fig. 9.30

Figure 9.38 The frequency domain circuit model for a transformer used to connect a load to a source.

Figure 9.39 The frequency-domain equivalent circuit for Example 9.13.

