EECS2200 Electric Circuits

Introduction

ENG2200 Topics to be covered

- Introduction and simple resistive circuits
- Techniques for circuit analysis
- Inductance, capacitance and mutual inductance
- First order circuits RC and RL
- Second order circuits RLC
- AC circuits (analysis and power calculation)
- Balanced 3-phase circuits ?????????
- Introduction to Laplace transform ???????

Marks Distribution

• LAB 20%

• Quiz (3) 15%

• Midterm 25%

• Final 40%

LAB

- Please read the lab manual carefully.
- LAB Policy
- Math requirement

Chapter 1 Overview

Objective

- Understanding and be able to use SI units and standard prefixes for power of 10
- Know and able to use the definition of volts and currents
- Be able to use the passive sign convention to calculate the power for an ideal basic circuit element given its voltage and current

Quantity	Basic Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	S
Electric current	ampere	A
Thermodynamic temperature	degree kelvin	K
Amount of substance	mole	mol
Luminous intensity	candela	cd

Copyright @ 2011 Pearson Education, Inc. publishing as Prentice Hall

Quantity	Unit Name (Symbol)	Formula
Frequency	hertz (Hz)	s^{-1}
Force	newton (N)	$kg \cdot m/s^2$
Energy or work	joule (J)	$N\cdot m$
Power	watt (W)	J/s
Electric charge	coulomb (C)	$A \cdot s$
Electric potential	volt (V)	J/C
Electric resistance	$ohm(\Omega)$	V/A
Electric conductance	siemens (S)	A/V
Electric capacitance	farad (F)	C/V
Magnetic flux	weber (Wb)	$V \cdot s$
Inductance	henry (H)	Wb/A

Prefix	Symbol	Power
atto	a	10^{-18}
femto	f	10^{-15}
pico	p	10^{-12}
nano	n	10^{-9}
micro	μ	10^{-6}
milli	m	10^{-3}
centi	c	10^{-2}
deci	d	10^{-1}
deka	da	10
hecto	h	10^{2}
kilo	k	10^{3}
mega	M	10^{6}
giga	G	10^{9}
tera	T	10^{12}
Copyright © 201	1 Pearson Education, Inc. pu	blishing as Prentice Hall

Voltage and Current

- The electric charge exists in discrete quantities that are multiple of electron charge 1.6022 × 10⁻¹⁹C
- Current is the rate of charge flow (positive charge)

$$i = \frac{dq}{dt}$$

- i=current (amperes)
- q= charge (coulomb)
- t= time (seconds)

André-Marie Ampère (1775-1836)

Voltage and Current

 Assume that 10 millions electrons are moving from left to right in a wire every microsecond, what is the value of the current flowing in the wire

$$i = \frac{10 \times 10^6 \times 1.6022 \times 10^{-19}}{10^{-6}} = 1.6022 \times 10^{-7}$$
Ampere

What about direction?

Voltage and Current

• Find the total charge delivered

$$i = 0 i = 0$$
$$i = e^{-5000t} i \ge 0$$

• Find the maximum value of the current

$$q = \frac{1}{\alpha^2} - \left(\frac{1}{\alpha} - \frac{1}{\alpha^2}\right) e^{\alpha t}$$

Voltage and Current

• Voltage is the energy per unit charge created by the separation

Alessandro Volta (1745-1827)

- v = voltage in volts
- w= energy in joules
- q = charge in coulombs

Power

- transfer (rate of change) of energy per unit time
- P in watts = Joules per second p = dw/dt= (dw/dq)(dq/dt) = vi

$$P = \frac{dw}{dt} = \frac{dw}{dq} \times \frac{dq}{dt}$$

$$P = vi$$

James Watt (1736-1819)

Reference Polarity

- Assignment of reference polarity is arbitrary
- Once you choose a reference, stick to it.
- In this course, The reference direction of a current in an element is the direction of the reference voltage drop across the element –

Passive sign convention

Reference Polarity

- Positive voltage drop from 1 to 2
- Positive charge flow from 1 to 2
- Voltage rise from 2 to 1
- For example $v_{12} = v_1 v_2 = 5 V$
- Positive charge are moving $1 \rightarrow 2$
- Negative value positive charge $2 \rightarrow 1$

TABLE 1.4 Interpretation of Reference Directions in Fig. 1.5	
Positive Value	Negative Value
 v voltage drop from terminal 1 to terminal 2 or 	voltage rise from terminal 1 to terminal 2 or
voltage rise from terminal 2 to terminal 1	voltage drop from terminal 2 to terminal 1
i positive charge flowing from terminal 1 to terminal 2 or	positive charge flowing from terminal 2 to terminal 1 or
negative charge flowing from terminal 2 to terminal 1	negative charge flowing from terminal 1 to terminal 2

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

Examples

• Assume the current and voltage are gives as

$$i(t) = \begin{cases} 0 & t < 0 \\ 20e^{-5000t} & t \ge 0 \end{cases} \quad v(t) = \begin{cases} 0 & t < 0 \\ 10e^{-5000t} KV & t \ge 0 \end{cases}$$

- Find the total charge entering the element
- Max. value of the current entering the element
- Power supplied to the element at 1ms
- Total energy delivered to the circuit

Example; Find power, Energy (10s)

Copyright © 2011 Pearson Education, Inc. publishing as Prentice Hall

