ENG2200 Electric Circuits

Chapter 3
Simple Resistive Circuits

Chapter 3

- Resistance in series and parallel
- Voltage and current dividers
- Measuring voltage, current, and resistance
- Delta-to-Wye (∆ to Y)

Resistance in Series

- Two or more resistors are connected in series if they carry the same current
- $R_{eq} = R_1 + R_2 + \dots + R_7$

Resistors in parallel.

• Two, or more, resistors are connected in parallel if they have the same voltage.

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}$$
 (use conductance)

Voltage and current dividers

$$v_{j} = iR_{j} = \frac{R_{j}}{R_{eq}}v$$

$$i_j = \frac{v}{R_j} = \frac{R_{eq}}{R_j}i$$

Measuring Voltage and Current

- Voltmeter is an instrument to measure voltage across a load
 - In parallel with the load
 - Ideal resistance of ∞
- Ammeter is an instrument to measure current in a load
 - In series with the load
 - Ideal resistance of 0

D'Arsonval meter movement.

- •When current flows in the coil, it creates a torque that rotates the pointer.
- •A meter is rated at 50mV and 1mA means when the coil is carrying 1mA there is a voltage drop of 50mV and the pointer full scale
- •To use it as an ammeter, a parallel resistor is used
- •To use it as voltmeter, a serial resistor is used

Example

- A 50 mV, 1 mA d'Arsonval movement is used as ammeter with a full scale of 10mA
- What is R_A?
- What measurement will result to if used to measure current in a 100Ω R with 1V across

Example

- A 50 mV, 1 mA d'Arsonval movement is used as Voltmeter with a full scale of 150 V
- What is R_v?
- What measurement will result if used to measure voltage across 75 k Ω R in series with 15 K Ω with v = 60V

$$R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}}$$

$$R_{2} = \frac{R_{c}Ra}{R_{a} + R_{b} + R_{c}}$$

$$R_{3} = \frac{R_{a}R_{b}}{R_{a} + R_{b} + R_{c}}$$

$$Ra = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}}$$

$$Rb = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}$$

$$Rc = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}}$$

