
EECS 3201:

Digital Logic Design

Lecture 13

Ihab Amer, PhD, SMIEEE, P.Eng.

2

Verilog HDL for Synthesis

 Verilog HDL was originally designed as a logic

circuit description and simulation language, and

was later adopted to synthesis

 Thus, the language has several features and

constructs that cannot be synthesized

 Even if synthesizable code is used, it should be

taken care that the style of the written code can

have a big impact on the quality of synthesized

circuits

3

always @(a or b) begin

 if (a== 1'b0 && b==1'b0)

 f =1'b0;

 else

 f =1'b1;

 end

Using always Blocks for

Combinational Logic

Synthesis*

*Produced using XST (synthesis

tool of Xilinx ISE 10.1). Target

Device: XC3S500E-4FG320.

Same applies for rest of examples.

4

Rules to Infer Combinational Logic

 All inputs to the circuit should be included

in the sensitivity list

 No other signals should be included in the

sensitivity list

 None of the statements within the always

block can be sensitive to rising or falling

edges of any signals

5

Examples’ Template

// DEFINITIONS

`define VEC_SIZE 2

// MODULE DECLARATION

module seq1 (vec1, c, d, e, f, g, clk, a, b);

 output [`VEC_SIZE-1:0] vec1; // bit vector output

 output c, d, e, f, g; // single bit outputs output

 input clk; // clock signal

 input a, b; // data inputs

 // SIGNAL DECLARATIONS

 reg c, d, e, f, g; // connects to the outputs

 reg [`VEC_SIZE-1:0] vec1; // bit vector output

 reg [`VEC_SIZE-1:0] vec2; // other bit vectors

 wire [`VEC_SIZE-1:0] vec3;

 // ** MODULE UNDER SYNTHESIS TEST GOES HERE

endmodule

6

Example 1

always @(a or b) begin

 if (b)

 c = a;

 end

Synthesis

Inferred latch. Typically, unintended

7

Workaround

always @(a or b) begin

 if (b)

 c = a;

 else

 c = 1'bx;

end

Synthesis

Pure combinational logic.

Inferred latch disappeared!

Synthesis

always @(a or b) begin

 c = 1'bx;

 if (b)

 c = a;

 end

OR

8

Example 2

always @(a or b) begin

 if (a)

 d = ~b;

 else

 e = b;

end

Synthesis

Two inferred latches!

If you go down one level of

hierarchy, you will notice

that the bottom-latch gate

port is inverted. Why?

9

Workaround
always @(a or b) begin

 if (a)

 begin

 d = ~b;

 e = 1'bx;

 end

 else

 begin

 e = b;

 d = 1'bx;

 end

 end

always @(a or b) begin

 d = 1'bx;

 e = 1'bx;

 if (a)

 d = ~b;

 else

 e = b;

 end

Synthesis

Synthesis

Pure combinational logic.

Inferred latches disappeared!

OR

10

Moral

 Latches are created by if-else statements with

no else clause. Such latches are typically

unintended

 Workaround – Two possible solutions:

 Every if statement should have an else clause. Every

variable that is assigned a value in one if or else

clause, should also be assigned a value in every

other clause (even if we do not care about this value)

 Unconditionally assign default values to variables at

the beginning of the always block

11

Example 3

always @(a or b)

case ({a,b})

 2'b00: c = 1'b0;

 2'b01: c = 1'b1;

 2'b10: c = 1'b0;

endcase

Synthesis

Inferred latch!

If you go down one level of

hierarchy, you will notice

that the latch gate port is

inverted. Why?

12

always @(a or b) begin

c = 1'bx;

case ({a,b})

 2'b00: c = 1'b0;

 2'b01: c = 1'b1;

 2'b10: c = 1'b0;

endcase

end

Workaround
always @(a or b)

case ({a,b})

 2'b00: c = 1'b0;

 2'b01: c = 1'b1;

 2'b10: c = 1'b0;

 2'b11: c = 1'bx;

endcase

always @(a or b)

case ({a,b})

 2'b00: c = 1'b0;

 2'b01: c = 1'b1;

 2'b10: c = 1'b0;

 default: c = 1'bx;

endcase

Synthesis

Synthesis

Pure combinational logic.

Inferred latch disappeared!

OR

OR

13

Moral

 Latches are created by case statements that miss the
code for an outcome of some input combinations. Such
latches are typically unintended

 Workaround – Three possible solutions:
 Every case statement should be a “full” case (covering all input

combinations). Every variable that is assigned a value in one
case, should also be assigned a value in every other case (even
if we do not care about this value)

 Unconditionally assign default values to variables. This can be
done at the beginning of the always block or using the default
statement

 Using default values is a good coding practice, even though the
case choices are all-inclusive. It accounts for ‘x’ and ‘z’ values at
the inputs (especially for simulation)

14

Example 4

always @(a) begin

 if (~a)

 vec2 = ~vec3;

end

Synthesis

Nothing!

Why?!

The output vec2 is an internal signal

value that is not used to generate

any output signal – thus, this section

of code is redundant, and is

optimized out by the synthesis tools

15

Moral

 Any logic that is deemed to be redundant may be
optimized out by the synthesis tool

 Even a structural Verilog description may not result
in the same structural connections once it is
synthesized

 If the designer would like to retain a specific
structure, then synthesis options must be used to
disable “flattening” of the hierarchy. Submodules
must be created (in order to create an artificial
hierarchy), and “Don’t Touch” options must be
checked for those submodules that must not be
optimized

16

always @(posedge clk) begin

 f <= a; // using nonblocking assignment

 vec1 <= vec1 + 1; // counter

 vec2 <= vec2 + 1; // This part will be optimized out

 case (a)

 1'b0: g <= b;

 //default: g <= 1'bx; // What happens if this is uncommented?

 endcase // note that case 1'b1 is not covered

end

Example 5

17

Example 5 – Synthesis Results

+ve edge triggered FF to

register the output signal “f”

+ve edge triggered FF

(with enable) to

register the output

signal “g”. FF

“captures” “b” when “a”

is “0”, otherwise, the

FF preserves its

already-stored value

This counter (2 FF’s and logic gates)

is directly synthesized by this

statement: “vec1 <= vec1 + 1;”

Nothing is synthesized for the

statement: “vec2 <= vec2 + 1”;

as vec2 is a redundant internal signal

18

Example 6*
always @(a or b or inp) begin

 if (a==1'b0)

 if (b==1'b0)

 if (inp==1'b0)

 f = 1'b0;

 else

 f = 1'b1;

 else

 if (inp==1'b0)

 f = 1'b1;

 else

 f = 1'b0;

 else

 if (b==1'b0)

 if (inp==1'b0)

 f = 1'b1;

 else

 f = 1'b1;

 else

 if (inp==1'b0)

 f = 1'b0;

 else

 f = 1'b0;

end

*An input port (inp) is

added to the module

template for this

specific example

Multi-level nested if-

else statement

19

Example 6 – Synthesis

Results

-Completely Serial Circuit

-Long Critical Path (4 “gate-levels”)

20

Example 6 – Workaround I

always @(a or b or inp) begin

 if (a==1'b0 && b==1'b0 && inp==1'b0)

 f = 1'b0;

 else if (a==1'b0 && b==1'b0 && inp==1'b1)

 f = 1'b1;

 else if (a==1'b0 && b==1'b1 && inp==1'b0)

 f = 1'b1;

 else if (a==1'b0 && b==1'b1 && inp==1'b1)

 f = 1'b0;

 else if (a==1'b1 && b==1'b0 && inp==1'b0)

 f = 1'b1;

 else if (a==1'b1 && b==1'b0 && inp==1'b1)

 f = 1'b1;

 else if (a==1'b1 && b==1'b1 && inp==1'b0)

 f = 1'b0;

 else

 f = 1'b0;

end

Parallel if-else

statement

21

Workaround I – Synthesis Results

-Parallel Circuit

-Shorter Critical Path (2 “gate-

levels”)

22

Example 6 – Workaround II

always @(a or b or inp)

 case ({a,b,inp})

 3'b000: f = 1'b0;

 3'b001: f = 1'b1;

 3'b010: f = 1'b1;

 3'b011: f = 1'b0;

 3'b100: f = 1'b1;

 3'b101: f = 1'b1;

 3'b110: f = 1'b0;

 default: f = 1'b0;

 endcase

Parallel case

statement

23

Workaround II – Synthesis Results

-Optimized ROM (or MUX) circuit

-2 “gate-levels”

24

Moral

 “Serial” control structures (like nested if-
else statements) can result in
corresponding serial chain of logic gates to
test conditions

 It is often better to use a case statement,
especially if the conditions are mutually
exclusive (so can be evaluated in parallel).
This is strongly valid for situations with two
or more cases

25

always @(posedge clk) begin

 e <= a;

 f <= e;

end

Non-blocking Assignment

Synthesis

26

always @(posedge clk) begin

 e = a;

 f = e;

end

Blocking Assignment

Synthesis

27

Examples of Non-synthesizable

Verilog HDL Features

 The “delay” statements “#”

 The “initial” blocks

 Usage of sensitivity lists that contain data inputs
beside the clock-edge (other than the RST)

 Always blocks that are sensitive to both the
rising and the falling edges of the same signal

 Such statements still can be useful in:
 Testbenches (as they are not synthesized; they are

generally used to test the behavior of the circuit)

 Early-stage models of the circuit to perform early
verification of its behavior

28

Concept of Simulation

 Pretends to simulate concurrent statements using event
lists and sensitivity matrix, based on all the individual
sensitivity lists

 Each concurrent statement gives rise to at least one SW
process in the simulator

 At every simulation cycle, the “concurrent” processes are
executed one after the other

 After a simulation cycle completes, the event list is
scanned for the signal(s) that change at the earliest time
on the list, and the simulation time advances to this time

 All the processes that are sensitive to a signal that just
changed are scheduled for execution in the next
simulation cycle, which now begins

29

Further Recommended Coding

Practices

 Look at the synthesis options, and choose the
ones that suits your needs

 Inspect the synthesized circuit whenever possible

 Loops generally create multiple copies of
combinational logic. If you prefer re-using one
copy of combinational logic, then use an FSM-
controlled sequential circuit

 Avoid using always blocks with empty sensitivity
list

30

Practice Assignment

 Redo all examples of this lecture using Quartus II
RTL Viewer

 Analyze the difference(s) if any, and consult your
professor if you fail to explain it

31 31 31

References

 Digital Design, 4th Edition, John Wakerly

 Advanced Digital Logic Design, Sunggu Lee

 www.ece.cmu.edu/~thomas/VSLIDES.pdf

