
EECS 3201:

Digital Logic Design

Lecture 16

Ihab Amer, PhD, SMIEEE, P.Eng.

2

Forget EECS 3201 – Lets try to

solve a “real problem” 

3

One Load at a Time

Non-Engineers

would do that

Not a smart idea!

4

Doing N Loads of Laundry

Still with the non-engineers

“combinational” way

5

This is how engineers would do it

So, engineering sense,

sometimes, makes sense!

6

Some Definitions (1/2)

Latency

The delay from when an input is established until the output

associated with that input becomes valid

Non-Engineers’ Laundry = __________ mins

Engineers’ Laundry = __________ mins

Throughput

The rate of which inputs or outputs are processed

Non-Engineers’ Laundry = __________ outputs/mins

Engineers’ Laundry = __________ outputs/mins

At steady state

90

120

1/90

1/60

7

Some Definitions (2/2)

Pipelining

Break task into stages, each stage outputs data for next

stage, all stages operate concurrently (if they have data)

8

Ok… Back to Digital Logic 

9

Pipelined Circuits – Use registers to hold

H’s input stable

10

Pipeline Diagrams

11

Pipeline Conventions

12

Pipelining Example (1/5)

R1 R2

13

Pipelining Example (2/5)

 So Pipelining the above system
 Doubled the throughput, from 1 item / 4 ns, to 1 item / 2 ns

 Latency stayed the same: 4 ns (sometimes it may increase)

 Datapath on left has critical path of 4 ns, so shortest clock period is 4 ns
 Can read new data, add, and write data to S, every 4 ns

 Datapath on right has critical path of only 2 ns
 So can read new data every 2 ns – sort of doubled performance

14

Pipelining Example (3/5)

module pipeline(W, X, Y, Z, CLK, Clr, S);

 input CLK, Clr;

 input [3:0] W; input [3:0] X; input [3:0] Y; input [3:0] Z;

 output [5:0] S;

 reg [5:0] S;

 reg [4:0] R1;

 reg [4:0] R2;

 always @ (posedge CLK or negedge Clr)

 if (~Clr) S <= 6'b000000;

 else

 begin

 R1 <= W + X;

 R2 <= Y + Z;

 S <= R1 + R2;

 end

endmodule

15

Pipelining Example (4/5)

Synthesized

Netlist

16

Pipelining Example (5/5)

Latency
At steady state,

1 item/clock

Simulation

17

Pipelining Summary

 Advantages:

Allows us to increase throughput, by breaking

up long combinational paths and (hence)

increasing clock frequency

 Disadvantages:

May increase latency

Only as good as the weakest link: slowest

step constraints system throughput

18

References

 MIT Lecture Notes on:

http://www.ece.concordia.ca/~asim

 http://www.ics.uci.edu/~harris/ics151/

