EECS 3201
Digital Logic Design
Lecture 4

lhab Amer, PhD, SMIEEE, P.Eng.

What i1s a HDL?

UNIVERSITE
IIIIIIIIII

m A high-level computer language that can describe
digital systems in textual form

m Two applications of HDL processing:

Logic Simulation
Logic Synthesis

IIIIIIIIII

HDL Applications

Logic Simulation

= A simulator translates the HDL description to a readable
output such as timing diagram

m It predicts how the hardware will work before it is actually
fabricated

m Functional errors can be corrected before actual fabrication

s Stimulus that tests the design is called test-bench (also
written in HDL)

Logic Synthesis
m Deriving the gate-level netlist from the HDL

= Typically accompanied with optimization, and automated
with computer software

m Restrictions on coding style for RTL model

= The outcome (netlist) is tool dependent

UNIVERSITE
IIIIIIIIII

IEEE-Supported HDL's

VHDL

m VHSIC HDL
m Based on Ada

m Department of defense
(DARPA) mandated
language

m Generally, considered
more difficult to learn

EECS 3201

Verify Logic
Based on C

Started as a Gateway
Design proprietary
language then later
bought by Cadence

Generally, considered
easier to learn

" S
Example (Simple Circuit)

Module name Ports names
- - Punctuation

..

a

module smpl_ct (A, B, C, X, y);

Ports L. InputA, B, C;

modes «---. - - _
Ol-Jtput X, ?’3__7 Internal connection 'é smpl_ct
wire e, - ___» Gate output c | —
.. and gl(e, A, B);
Primitive RN .
gates o not g2(y, C); ™* Gate inputs
T org3(x, e,y);
endmodule A— ¢
Optional B 1 &8) g’
gate-name
C P

"
Gate Delays

module ct_with_delay (A, B, C, X, y);

input A, B, C;
output X, y;
wiree; Gate delay in (ns)

and #(30) gl(e, A, B);
or #(20) g3(x, e, y);

not #(10) g2(y, C);
endmodule

Delay =30 ns

A ——] 1\ e

Delay =20 ns

YORK
Time Input Output
(ns) ABC y eXx
— 000 101
— 111 101
10 111 001
20 111 001
30 111 010
40 111 010
50 111 011

5| 8) | &3
Delay =10 ns
C I

" N
Simulation Output

Timing Diagram

Ons 20ns 40ns 60ns 80ns 100ns 120ns 140ns 160ns 180ns
I S T 1 N N T A (S [

stimerct. A /
stimerct.B /
stimerct.C X

stimcrct.x / \ /
stimerct.y [\

- YORK
Boolean Expression

module ct_bin (A, B, C, x, y);

input A, B, C;

output X, y; oR

v

__.assign x=(A & B) | ~C;

AND NOT
endmodule

Keyword "

A — 1\ e

B—A % J | & g
c—1> 1 y

L YORK
Verilog HDL Operators

IIIIIIIIII

m Refer to table 4-10 of Mano textbook for a
list of Verilog HDL Operators

"

Three-State Gates

N

Tri-state buffer

if1 vs. ifO tri-state 11 out
buffers
control
bufifl
ifl vs. ifO tri-state 1n out
inverters
control

notifl

Normal input A J
Control input C

Output Y =AifC=1
High—impedance if C = 0

n I out
control j

bufif0

n out

control

notif0

UNIVERSITE
IIIIIIIIII

Four-Valued Logic

m Verilog Logic Values

The underlying data representation allows for
any bit to have one of four values:

0, 1, z (high impedance), and x (unknown)

4"

\
- N
N

4 4
- A possible output from tri-state gates - Not a real value
- Maybe 0, 1, z, or in the state of
change
- Simulator cannot determine
the value, and perhaps you
should worry!

No Question!

- It is a real electric effect

11

UNIVERSITEu
UNIVERSITY

Truth Tables for Primitive Gates

z

0O 1 x

— X

— X

1 x X

— <

0O 1 x X

— X

X

or

z

O 1 x

0
1
X
Z

x X

X X

— X

O 0 0 O
0O X X X

o o

output

input

and

O +d4 X N

not

z

0O 1 x

0O 1 x X

1 0 x X

X X X X

X X X

X

Xor

0
1

12

" N
YORK

Verilog Design Styles
Veriloé\[‘)\e"‘sign\
Styles . ™
X » Testbenches
havioral
Continuous Components and Mos,,tily Sequential circuits
Assignment Interconnects . Reg'iISterS
E.g. Gate-level - State machines
Modeling g

““What happens inside?

~~~~~~

Subset most suitable for synthesis
13



" SN
Example — 2:1 MUX

IIIIIIIIII
IIIIIIIIII

select
select ouT
0 B
1 A

OUT = (A. select) + (B . select)

14



" N

YORK I

UNIVERSITE
UNI VER SITY

Gate-Level Model

module mux2x1 gl (A, B, select, OUT);

input A, B, select;
output OUT,;
wire s_comp, c, d;

not gl(s_comp, select);

and g2(c,select,A);

and g3(d,s_comp,B);

or g4(OUT,c,d);
endmodule

select s_comp

15



" N

Dataflow Model

module mux2x1l_dfl (A, B, select, OUT);

input A, B, select;

output OUT,;
assign OUT = (A & select) | (B & ~select);

endmodule

module mux2x1l_df2 (A, B, select, OUT);

input A, B, select;

output OUT,;
assign OUT =select ? A: B;

endmodule

YORK I

UNIVERSITE

16



'_
Behavioral Model

module mux2x1 _bh (A, B, select, OUT);

Retains its Input A, B, select;

value until = output OUT; -
a new " reg OUT; Sensitivity List
value is R iad

assigned always @ (select or Aor B) N

If (select ==1) OUT =A;
else OUI,: B, " Equality Symbol

.
endmodule procedural

Assignment if (select) ...

Executes every time
there is a change in
any of the variables
in the sensitivity list

Can be written as:

17



UNIVERSITE
IIIIIIIIII

Structural Design — Recap

m Structural design is the simplest to
understand. This style is the closest to
schematic capture and utilizes simple
building blocks to compose logic functions

m Components are interconnected in a
hierarchical manner

m Structural descriptions may connect simple
gates (gate-level) or complex, abstract
components

m Useful when expressing a design that is
naturally composed of sub-blocks

18



UNIVERSITE
IIIIIIIIII

Data-Flow Design — Recap

m Describes how data moves through the
system and the various processing steps

m Data Flow uses series of continuous
assignment statements

m Data Flow Is most useful style when series
of Boolean equations can represent a logic

19



UNIVERSITE
IIIIIIIIII

Behavioral Design — Recap

m [t accurately models what happens on the inputs and
outputs of the black box (no matter what is inside and
how it works)

m This style uses always statements in Verilog

m Procedural statements in an always block executes
sequentially. However, the always block itself executes
concurrently with other concurrent statements in the
same module (instances, continuous assignments, and
other always statements)

m Typically used for test-benches or high-level
Implementations to drive logic synthesis tools

20



" S
Nets, Variables, Parameters, ##
and Directives

Net: Physical wire between modules

A wire is the most commonly-used net
Variable: Stores a value during a Verilog program’s
execution, and needs not have physical significance in a
circuit

A reg Is the most commonly-used variable
Parameter: A facility provided by Verilog for defining
named constants within a module, to improve readabllity
and maintainability

E.g. parameter ESC = 700011011,

Directive: To control the compilation process
Include and ‘define are the most commonly-used directives

21



"
YORKRI

IIIIIIIIII
IIIIIIIIII

Logical Vs Bitwise Operators

m Examples of Ambiguities:
71(2'b01 && 2'b10) Vs (2'b01 & 2'b10)
H1(3) Vs ~(5)

22



" I
Ok... Design is done... FRCHEE
How should | test it?

m Same as what you would do to test a SW
program:

Give it some inputs, and see if it does what you
expect

After testing, do you guarantee that the program is
bug free? NO!

But, to the extent possible, you have determined that
the program does what you want it to do

m Same happens in HW design, you simulate the
system’s behavior with some input stimulus

23



Test Bench

Stimulus Module

UUUUU

RRRRR

UUUUU

Design Module

RRRRR

24



" S
| am sick of this MUXI!

module stimcrct;

reg A, B, select; Instance of

.y design module

wire OUT,; -
mux2x1 df2 mux (A B, select, OUT);
~initial Procedural Assignment —
o begin ,. -~ used with ‘reg”

Executes only A=1b0;: B=1b1; select = 1'b0;
onceatt=0 #100
A=1Db0;: B=1b1; select = 1'b1;
#100 $f|n|sh

end .. Terminates
endmodule Slmulatlon

module mux2x1l_df2 (A, B, select, OUT);
input A, B, select;

output OUT,;
assign OUT =select? A: B;
endmodule

Stimulus Module

Design Module

25



" A
YORKRI

UNIVERSITE
UNIVERSITY

Simulation Output

"

%" YeriLogger Pro - [Diagram - C:\SYNAPT~1\untitled?.tim*]
§% File Expaort Edit Bus Libraries Project Editor  Simulate  Report  VWiew  Options  Window  Help

SHIRS RRARER | smoo| | Al g

stirmecrct. QUT

26



" S
Examples of Stimulus Generation

initial
begin
A=0;B=0
#10 A=1,;
#20 A=0;B=1
end
initial
begin :
J D = 3'b000: 3-bits Truth Table
repeat (7)
#10 D =D + 3'b001;
end

27



UNIVERSITE
IIIIIIIIII

References

_ecture Notes of Dr. Sebastian Magierowski —
Fall 2013

Digital Design, 39 Edition, M. Morris, Mano

Digital Design, 4t Edition, John Wakerly

m cpk.auc.dk/education/SSU-

2007/mm10/ssu_mm10.pdf

m www.ece.cmu.edu/~thomas/VSLIDES.pdf
m http://ece.gmu.edu/coursewebpages/ECE/ECE4

48/S10/

28



