
EECS 3201:

Digital Logic Design

Lecture 4

Ihab Amer, PhD, SMIEEE, P.Eng.

2

What is a HDL?

 A high-level computer language that can describe

digital systems in textual form

 Two applications of HDL processing:

 Logic Simulation

 Logic Synthesis

3

HDL Applications
 Logic Simulation

 A simulator translates the HDL description to a readable

output such as timing diagram

 Functional errors can be corrected before actual fabrication

 It predicts how the hardware will work before it is actually

fabricated

 Stimulus that tests the design is called test-bench (also

written in HDL)

 Logic Synthesis

 Deriving the gate-level netlist from the HDL

 Typically accompanied with optimization, and automated

with computer software

 Restrictions on coding style for RTL model

 The outcome (netlist) is tool dependent

4

IEEE-Supported HDL’s

VHDL Verilog

 VHSIC HDL

 Based on Ada

 Department of defense
(DARPA) mandated
language

 Based on C

 Started as a Gateway
Design proprietary
language then later
bought by Cadence

 Verify Logic

EECS 3201

 Generally, considered
more difficult to learn

 Generally, considered
easier to learn

5

Example (Simple Circuit)

module smpl_ct (A, B, C, x, y);

endmodule

smpl_ct
A
B
C

x

y

input A, B, C;

output x, y;

wire e;

and g1(e, A, B);

not g2(y, C);

or g3(x, e, y);

Module name Ports names

Ports

modes
Internal connection

Punctuation

Primitive

gates

Optional

gate-name

Gate output

Gate inputs

6

Gate Delays
module ct_with_delay (A, B, C, x, y);

endmodule

input A, B, C;

output x, y;

wire e;

and #(30) g1(e, A, B);

not #(10) g2(y, C);

or #(20) g3(x, e, y);

Delay = 20 ns
Delay = 30 ns

Delay = 10 ns

Gate delay in (ns)

Time

(ns)

Input

A B C

Output

y e x

0 0 0

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

–

10

20

30

40

50

1 0 1

1 0 1

0 0 1

0 0 1

0 1 0

0 1 0

0 1 1

–

7

Simulation Output

Timing Diagram

8

Boolean Expression

module ct_bln (A, B, C, x, y);

endmodule

input A, B, C;

output x, y;

assign x = (A & B) | ~C;
Keyword

AND

OR

NOT

9

Verilog HDL Operators

 Refer to table 4-10 of Mano textbook for a

list of Verilog HDL Operators

10

Three-State Gates

Tri-state buffer

if1 vs. if0 tri-state

buffers

if1 vs. if0 tri-state

inverters

11

Four-Valued Logic

 Verilog Logic Values

The underlying data representation allows for

any bit to have one of four values:

0, 1,

No Question!

z (high impedance), and x (unknown)

- A possible output from tri-state gates

- It is a real electric effect

- Not a real value

- Maybe 0, 1, z, or in the state of

change

- Simulator cannot determine

the value, and perhaps you

should worry!

12

Truth Tables for Primitive Gates

0

1
x

z

0

0
0

0

0

1
x

x

0

x
x

x

0

x
x

x

0 1 x z and

0

1
x

z

0

1
x

x

1

0
x

x

x

x
x

x

x

x
x

x

0 1 x z xor

0

1
x

z

1

0
x

x

input output not

0

1
x

z

0

1
x

x

1

1
1

1

x

1
x

x

x

1
x

x

0 1 x z or

13

Verilog Design Styles

Components and

interconnects

structural

Verilog Design

Styles

dataflow behavioral

• Registers

• State machines

Mostly Sequential circuits

Subset most suitable for synthesis

• Testbenches

E.g. Gate-level

Modeling

Continuous

Assignment

What is inside?
What happens inside?

14

Example – 2:1 MUX

select

B

A

OUT

select OUT

B

A 1

0

OUT = (A . select) + (B . select′)

15

Gate-Level Model

module mux2x1_gl (A, B, select, OUT);

endmodule

input A, B, select;

output OUT;

wire s_comp, c, d;

not g1(s_comp, select);

and g2(c,select,A);

and g3(d,s_comp,B);

s_comp

OUT

select

B

A

d

c
or g4(OUT,c,d);

Components

and

Interconnects

16

Dataflow Model

module mux2x1_df1 (A, B, select, OUT);

endmodule

input A, B, select;

output OUT;

assign OUT = (A & select) | (B & ~select);

Continuous

Assignment

module mux2x1_df2 (A, B, select, OUT);

endmodule

input A, B, select;

output OUT;

assign OUT = select ? A : B;

Another

Dataflow Model

17

Behavioral Model

module mux2x1_bh (A, B, select, OUT);

endmodule

input A, B, select;

output OUT;

always @ (select or A or B)

reg OUT;

if (select == 1) OUT = A;

else OUT = B;

Sensitivity List

Equality Symbol

Can be written as:

if (select) …

Retains its

value until

a new

value is

assigned

Executes every time

there is a change in

any of the variables

in the sensitivity list

Mostly used

with sequential

circuits

Procedural

Assignment

18

Structural Design – Recap

 Structural design is the simplest to
understand. This style is the closest to
schematic capture and utilizes simple
building blocks to compose logic functions

 Components are interconnected in a
hierarchical manner

 Structural descriptions may connect simple
gates (gate-level) or complex, abstract
components

 Useful when expressing a design that is
naturally composed of sub-blocks

19

Data-Flow Design – Recap

 Describes how data moves through the

system and the various processing steps

 Data Flow uses series of continuous

assignment statements

 Data Flow is most useful style when series

of Boolean equations can represent a logic

20

Behavioral Design – Recap

 It accurately models what happens on the inputs and
outputs of the black box (no matter what is inside and
how it works)

 This style uses always statements in Verilog

 Procedural statements in an always block executes
sequentially. However, the always block itself executes
concurrently with other concurrent statements in the
same module (instances, continuous assignments, and
other always statements)

 Typically used for test-benches or high-level
implementations to drive logic synthesis tools

21

Nets, Variables, Parameters,

and Directives

 Net: Physical wire between modules
 A wire is the most commonly-used net

 Variable: Stores a value during a Verilog program’s
execution, and needs not have physical significance in a
circuit
 A reg is the most commonly-used variable

 Parameter: A facility provided by Verilog for defining
named constants within a module, to improve readability
and maintainability
 E.g. parameter ESC = 7′b0011011;

 Directive: To control the compilation process
 ′include and ′define are the most commonly-used directives

22

Logical Vs Bitwise Operators

 Examples of Ambiguities:

(2′b01 && 2′b10) Vs (2′b01 & 2′b10)

 !(5) Vs ~(5)

23

Ok… Design is done…

How should I test it?

 Same as what you would do to test a SW

program:

 Give it some inputs, and see if it does what you

expect

 After testing, do you guarantee that the program is

bug free?

 But, to the extent possible, you have determined that

the program does what you want it to do

 Same happens in HW design, you simulate the

system’s behavior with some input stimulus

NO!

24

Test Bench

module testcircuit;

reg TA, TB, Tselect;

wire TOUT;

circuit cr (TA, TB, Tselect, TOUT);

module circuit (A, B, select, OUT);

input A, B, select;

output OUT;

Stimulus Module Design Module

25

I am sick of this MUX!!

module mux2x1_df2 (A, B, select, OUT);

endmodule

input A, B, select;
output OUT;
assign OUT = select ? A : B;

module stimcrct;

endmodule

reg A, B, select;

wire OUT;
mux2x1_df2 mux (A, B, select, OUT);

initial
begin

end

A = 1'b0; B = 1'b1; select = 1'b0;

A = 1'b0; B = 1'b1; select = 1'b1;
#100

#100 $finish;

Stimulus Module

Design Module

Instance of

design module

Executes only

once at t = 0

Terminates

simulation

Procedural Assignment –

used with “reg”

26

Simulation Output

27

Examples of Stimulus Generation

initial
begin

end

A = 0; B = 0;

#20 A = 0; B = 1;
#10 A = 1;

initial
begin

end

D = 3′b000;

#10 D = D + 3′b001;

 repeat (7)

3-bits Truth Table

28

References

 Lecture Notes of Dr. Sebastian Magierowski –
Fall 2013

 Digital Design, 3rd Edition, M. Morris, Mano

 Digital Design, 4th Edition, John Wakerly

 cpk.auc.dk/education/SSU-

2007/mm10/ssu_mm10.pdf

 www.ece.cmu.edu/~thomas/VSLIDES.pdf

 http://ece.gmu.edu/coursewebpages/ECE/ECE4

48/S10/

