
1Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware-Based Speculation
 Execute instructions along predicted execution

paths but only commit the results if prediction
was correct

 Instruction commit: allowing an instruction to
update the register file when instruction is no
longer speculative

 Need an additional piece of hardware to prevent
any irrevocable action until an instruction
commits

 Need to separate executing the instruction to
pass data to other instructions from completing
(performing operations that can not be undone)

B
ranch P

rediction

2Copyright © 2012, Elsevier Inc. All rights reserved.

Reorder Buffer

 Reorder buffer – holds the result of instruction
between completion and commit (and supply
them to any instruction who needs them just like
the RS in Tomasulo’s)

 Four fields:
 Instruction type: branch/store/register
 Destination field: register number or memory address
 Value field: output value
 Ready field: completed execution?

 Modify reservation stations:
 Operand source is now reorder buffer instead of

functional unit (results are tagged with ROB entry #)

B
ranch P

rediction

3Copyright © 2012, Elsevier Inc. All rights reserved.

Reorder Buffer

 Register values and memory values are not
written until an instruction commits

 On misprediction:
 Speculated entries in ROB are cleared

 Exceptions:
 Not recognized until it is ready to commit

 4 stages
 Issue
 Execute
 Write Result
 Commit

B
ranch P

rediction

4

Reorder Buffer

 Issue
 If empty RS and ROB entry  Issue; else stall

 Send operands to RS if available in registers or ROB

 The number of the ROB entry allocated to instruction
is sent to RS to tag the results with

 If operands are not available yet, the ROB entry is
sent to the RS to wait for results on the CDB

Copyright © 2012, Elsevier Inc. All rights reserved.

5

Reorder Buffer

 Execute
 If one or more operands are not available, monitor the

CDB.

 When the result is broadcast on the CDB (we know
that from the ROB entry tag) copy it

 When all operands are ready, start execution

 Write Result
 When execution is completed, broadcast the result on

the CDB tagged with ROB entry #

 Results are copied to ROB entry and all waiting RS

 Execute out of order, commit in order.

Copyright © 2012, Elsevier Inc. All rights reserved.

6

Reorder buffer

 When an instruction reaches the head of the
ROB and the result is ready in the buffer,
 If ALU op write it to the register file and remove

instruction from ROB

 If the instruction is a store, write it to the memory and
remove the instruction from the ROB

 If the instruction is a branch, if prediction is correct,
remove it from the ROB. If misprediction flush the
ROB and start from the correct successor.

Copyright © 2012, Elsevier Inc. All rights reserved.

7Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Issue and Static Scheduling

 To achieve CPI < 1, need to complete multiple
instructions per clock

 Solutions:
 Statically scheduled superscalar processors
 VLIW (very long instruction word) processors
 dynamically scheduled superscalar processors

M
ultiple Issue and S

tatic S
cheduling

8Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Issue

M
ultiple Issue and S

tatic S
cheduling

9Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Package multiple operations into one instruction

 Example VLIW processor:
 One integer instruction (or branch)
 Two independent floating-point operations
 Two independent memory references

 Must be enough parallelism in the code to fill the
available slots

M
ultiple Issue and S

tatic S
cheduling

10Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Disadvantages:
 Statically finding parallelism
 Code size
 No hazard detection hardware
 Binary code compatibility

M
ultiple Issue and S

tatic S
cheduling

11

VLIW Example

 Source instruction Instruction using result Latency

 FP ALU OP FP ALU OP 3

 FP ALU OP Store double 2

 Load double FP ALU OP 1

 Load Double Store double 0

Copyright © 2012, Elsevier Inc. All rights reserved.

For (I=1000;I>0;I++)

x[I]=x[I]+s;

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2
S.D 0(R1),F4
DADDUI R1,R1,#-8
BNE R 1,R2,Loop

12

VLIW Example

 Assume that w can schedule 2 memory
operations, 2 FP operations, and one integer or
branch

Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2

LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6

SD -16(R1),F12 SD -24(R1),F16 DADD R1,R1,#-56 7

SD 24(R1),F20 SD 16(R1),F24 8

SD 8(R1),F28 BNEZ R1,LOOP 9

13Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling, Multiple Issue, and Speculation

 Modern microarchitectures:
 Dynamic scheduling + multiple issue + speculation

 Two approaches:
 Assign reservation stations and update pipeline

control table in half clock cycles
 Only supports 2 instructions/clock

 Design logic to handle any possible dependencies
between the instructions

 Hybrid approaches

 Issue logic can become bottleneck

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

14Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Overview of Design

15Copyright © 2012, Elsevier Inc. All rights reserved.

 Limit the number of instructions of a given class
that can be issued in a “bundle”
 I.e. one FP, one integer, one load, one store

 Examine all the dependencies among the
instructions in the bundle

 If dependencies exist in bundle, encode them in
reservation stations

 Also need multiple completion/commit

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Multiple Issue

16Copyright © 2012, Elsevier Inc. All rights reserved.

Loop: LD R2,0(R1) ;R2=array element

DADDIU R2,R2,#1 ;increment R2

SD R2,0(R1) ;store result

DADDIU R1,R1,#8 ;increment pointer

BNE R2,R3,LOOP ;branch if not last element

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example

17Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example (No Speculation)

18Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example

19

Thread level parallelism

 ILP is used in straight line code or loops

 Cache miss (off-chip cache and main memory) is
unlikely to be hidden using ILP.

 Thread level parallelism is used instead.
 Thread: process with own instructions and data

 thread may be a process part of a parallel program of
multiple processes, or it may be an independent
program

 Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to
execute

Copyright © 2012, Elsevier Inc. All rights reserved.

20Copyright © 2012, Elsevier Inc. All rights reserved.

From: Tullsen, Eggers, and
Levy,

“Simultaneous Multithreading:
Maximizing On-chip
Parallelism, ISCA 1995.

21

Thread Level parallelism

 Multithreading: multiple threads to share the functional
units of 1 processor via overlapping
 processor must duplicate independent state of each thread e.g.,

a separate copy of register file, a separate PC, and for running
independent programs, a separate page table

 memory shared through the virtual memory mechanisms, which
already support multiple processes

 HW for fast thread switch; much faster than full process switch 
100s to 1000s of clocks

 When to switch?
 Alternate instruction per thread (fine grain)

 When a thread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)

Copyright © 2012, Elsevier Inc. All rights reserved.

22

Fine-Grained Multithreading
 Switches between threads on each instruction,

causing the execution of multiples threads to be
interleaved

 Usually done in a round-robin fashion, skipping
any stalled threads

 CPU must be able to switch threads every clock
 Advantage is it can hide both short and long

stalls, since instructions from other threads
executed when one thread stalls

 Disadvantage is it slows down execution of
individual threads, since a thread ready to
execute without stalls will be delayed by
instructions from other threads

 Used on Sun’s T1

Copyright © 2012, Elsevier Inc. All rights reserved.

23

Coarse-Grained Multithreading

 Switches threads only on costly stalls, such as L2 cache
misses

 Advantages
 Need to have very fast thread-switching
 Doesn’t slow down thread, since instructions from

other threads issued only when the thread encounters
a costly stall

 Disadvantage is hard to overcome throughput losses
from shorter stalls, due to pipeline start-up costs
 Since CPU issues instructions from 1 thread, when a

stall occurs, the pipeline must be emptied or frozen
 New thread must fill pipeline before instructions can

complete
 Because of this start-up overhead, coarse-grained

multithreading is better for reducing penalty of high cost
stalls, where pipeline refill << stall time

Copyright © 2012, Elsevier Inc. All rights reserved.

24

Simultanuous Multithreading SMT

 Fine-grained multithreading implemented on top
of multiple-issued dynamically scheduled
processor.

 Multiple instructions from different threads.

Copyright © 2012, Elsevier Inc. All rights reserved.

25

SMT

Copyright © 2012, Elsevier Inc. All rights reserved.

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

One thread, 8 Units Two threads, 8 Units

26

Multithreading

Copyright © 2012, Elsevier Inc. All rights reserved.

Ti
m

e
(p

ro
ce

ss
or

 c
yc

le
) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

27

Sun T1

 Focused on TLP rather than ILP

 Fine-grained multithreading

 8 cores, 4 threads per core, one shared FP unit.

 6-stage pipeline (similar to MIPS with one stage
for thread switching)

 L1 caches: 16KB I, 8KB D, 64-byte block size
(misses to L2 23 cycles with no contention)

 L2 caches: 4 separate L2 caches each 750KB.
Misses to main memory 110 cycles assuming no
contention

Copyright © 2012, Elsevier Inc. All rights reserved.

28

Sun T1

 Relative change in the miss rate and latency
when executing one thread per core vs 4 threads
per core (TPC-C)

Copyright © 2012, Elsevier Inc. All rights reserved.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L1 I miss
rate

L1 D miss
rate

L2 miss
rate

L1 I miss
latency

L1 D miss
latency

L2 miss
latency

29

Sun T1

 Breakdown of the status on an average thread.
Ready means the thread is ready, but another
one is chosen – The core stalls only if all the 4
threads are not ready

Copyright © 2012, Elsevier Inc. All rights reserved.

0%

20%

40%

60%

80%

100%

120%

TPC‐C SPECJBB00 SPECWeb99

Not ready

Ready

Executing

30

Sun t1

 Breakdown of the causes for a thread being not
ready

Copyright © 2012, Elsevier Inc. All rights reserved.

0%

20%

40%

60%

80%

100%

120%

TPC‐C SPECJBB00 SPECWeb99

Other

Pipeline delay

L2 miss

L1 D miss

L1 I miss

