
1Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware-Based Speculation
 Execute instructions along predicted execution

paths but only commit the results if prediction
was correct

 Instruction commit: allowing an instruction to
update the register file when instruction is no
longer speculative

 Need an additional piece of hardware to prevent
any irrevocable action until an instruction
commits

 Need to separate executing the instruction to
pass data to other instructions from completing
(performing operations that can not be undone)

B
ranch P

rediction

2Copyright © 2012, Elsevier Inc. All rights reserved.

Reorder Buffer

 Reorder buffer – holds the result of instruction
between completion and commit (and supply
them to any instruction who needs them just like
the RS in Tomasulo’s)

 Four fields:
 Instruction type: branch/store/register
 Destination field: register number or memory address
 Value field: output value
 Ready field: completed execution?

 Modify reservation stations:
 Operand source is now reorder buffer instead of

functional unit (results are tagged with ROB entry #)

B
ranch P

rediction

3Copyright © 2012, Elsevier Inc. All rights reserved.

Reorder Buffer

 Register values and memory values are not
written until an instruction commits

 On misprediction:
 Speculated entries in ROB are cleared

 Exceptions:
 Not recognized until it is ready to commit

 4 stages
 Issue
 Execute
 Write Result
 Commit

B
ranch P

rediction

4

Reorder Buffer

 Issue
 If empty RS and ROB entry Issue; else stall

 Send operands to RS if available in registers or ROB

 The number of the ROB entry allocated to instruction
is sent to RS to tag the results with

 If operands are not available yet, the ROB entry is
sent to the RS to wait for results on the CDB

Copyright © 2012, Elsevier Inc. All rights reserved.

5

Reorder Buffer

 Execute
 If one or more operands are not available, monitor the

CDB.

 When the result is broadcast on the CDB (we know
that from the ROB entry tag) copy it

 When all operands are ready, start execution

 Write Result
 When execution is completed, broadcast the result on

the CDB tagged with ROB entry #

 Results are copied to ROB entry and all waiting RS

 Execute out of order, commit in order.

Copyright © 2012, Elsevier Inc. All rights reserved.

6

Reorder buffer

 When an instruction reaches the head of the
ROB and the result is ready in the buffer,
 If ALU op write it to the register file and remove

instruction from ROB

 If the instruction is a store, write it to the memory and
remove the instruction from the ROB

 If the instruction is a branch, if prediction is correct,
remove it from the ROB. If misprediction flush the
ROB and start from the correct successor.

Copyright © 2012, Elsevier Inc. All rights reserved.

7Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Issue and Static Scheduling

 To achieve CPI < 1, need to complete multiple
instructions per clock

 Solutions:
 Statically scheduled superscalar processors
 VLIW (very long instruction word) processors
 dynamically scheduled superscalar processors

M
ultiple Issue and S

tatic S
cheduling

8Copyright © 2012, Elsevier Inc. All rights reserved.

Multiple Issue

M
ultiple Issue and S

tatic S
cheduling

9Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Package multiple operations into one instruction

 Example VLIW processor:
 One integer instruction (or branch)
 Two independent floating-point operations
 Two independent memory references

 Must be enough parallelism in the code to fill the
available slots

M
ultiple Issue and S

tatic S
cheduling

10Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Disadvantages:
 Statically finding parallelism
 Code size
 No hazard detection hardware
 Binary code compatibility

M
ultiple Issue and S

tatic S
cheduling

11

VLIW Example

 Source instruction Instruction using result Latency

 FP ALU OP FP ALU OP 3

 FP ALU OP Store double 2

 Load double FP ALU OP 1

 Load Double Store double 0

Copyright © 2012, Elsevier Inc. All rights reserved.

For (I=1000;I>0;I++)

x[I]=x[I]+s;

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2
S.D 0(R1),F4
DADDUI R1,R1,#-8
BNE R 1,R2,Loop

12

VLIW Example

 Assume that w can schedule 2 memory
operations, 2 FP operations, and one integer or
branch

Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2

LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6

SD -16(R1),F12 SD -24(R1),F16 DADD R1,R1,#-56 7

SD 24(R1),F20 SD 16(R1),F24 8

SD 8(R1),F28 BNEZ R1,LOOP 9

13Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling, Multiple Issue, and Speculation

 Modern microarchitectures:
 Dynamic scheduling + multiple issue + speculation

 Two approaches:
 Assign reservation stations and update pipeline

control table in half clock cycles
 Only supports 2 instructions/clock

 Design logic to handle any possible dependencies
between the instructions

 Hybrid approaches

 Issue logic can become bottleneck

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

14Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Overview of Design

15Copyright © 2012, Elsevier Inc. All rights reserved.

 Limit the number of instructions of a given class
that can be issued in a “bundle”
 I.e. one FP, one integer, one load, one store

 Examine all the dependencies among the
instructions in the bundle

 If dependencies exist in bundle, encode them in
reservation stations

 Also need multiple completion/commit

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Multiple Issue

16Copyright © 2012, Elsevier Inc. All rights reserved.

Loop: LD R2,0(R1) ;R2=array element

DADDIU R2,R2,#1 ;increment R2

SD R2,0(R1) ;store result

DADDIU R1,R1,#8 ;increment pointer

BNE R2,R3,LOOP ;branch if not last element

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example

17Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example (No Speculation)

18Copyright © 2012, Elsevier Inc. All rights reserved.

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example

19

Thread level parallelism

 ILP is used in straight line code or loops

 Cache miss (off-chip cache and main memory) is
unlikely to be hidden using ILP.

 Thread level parallelism is used instead.
 Thread: process with own instructions and data

 thread may be a process part of a parallel program of
multiple processes, or it may be an independent
program

 Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to
execute

Copyright © 2012, Elsevier Inc. All rights reserved.

20Copyright © 2012, Elsevier Inc. All rights reserved.

From: Tullsen, Eggers, and
Levy,

“Simultaneous Multithreading:
Maximizing On-chip
Parallelism, ISCA 1995.

21

Thread Level parallelism

 Multithreading: multiple threads to share the functional
units of 1 processor via overlapping
 processor must duplicate independent state of each thread e.g.,

a separate copy of register file, a separate PC, and for running
independent programs, a separate page table

 memory shared through the virtual memory mechanisms, which
already support multiple processes

 HW for fast thread switch; much faster than full process switch
100s to 1000s of clocks

 When to switch?
 Alternate instruction per thread (fine grain)

 When a thread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)

Copyright © 2012, Elsevier Inc. All rights reserved.

22

Fine-Grained Multithreading
 Switches between threads on each instruction,

causing the execution of multiples threads to be
interleaved

 Usually done in a round-robin fashion, skipping
any stalled threads

 CPU must be able to switch threads every clock
 Advantage is it can hide both short and long

stalls, since instructions from other threads
executed when one thread stalls

 Disadvantage is it slows down execution of
individual threads, since a thread ready to
execute without stalls will be delayed by
instructions from other threads

 Used on Sun’s T1

Copyright © 2012, Elsevier Inc. All rights reserved.

23

Coarse-Grained Multithreading

 Switches threads only on costly stalls, such as L2 cache
misses

 Advantages
 Need to have very fast thread-switching
 Doesn’t slow down thread, since instructions from

other threads issued only when the thread encounters
a costly stall

 Disadvantage is hard to overcome throughput losses
from shorter stalls, due to pipeline start-up costs
 Since CPU issues instructions from 1 thread, when a

stall occurs, the pipeline must be emptied or frozen
 New thread must fill pipeline before instructions can

complete
 Because of this start-up overhead, coarse-grained

multithreading is better for reducing penalty of high cost
stalls, where pipeline refill << stall time

Copyright © 2012, Elsevier Inc. All rights reserved.

24

Simultanuous Multithreading SMT

 Fine-grained multithreading implemented on top
of multiple-issued dynamically scheduled
processor.

 Multiple instructions from different threads.

Copyright © 2012, Elsevier Inc. All rights reserved.

25

SMT

Copyright © 2012, Elsevier Inc. All rights reserved.

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

One thread, 8 Units Two threads, 8 Units

26

Multithreading

Copyright © 2012, Elsevier Inc. All rights reserved.

Ti
m

e
(p

ro
ce

ss
or

 c
yc

le
) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

27

Sun T1

 Focused on TLP rather than ILP

 Fine-grained multithreading

 8 cores, 4 threads per core, one shared FP unit.

 6-stage pipeline (similar to MIPS with one stage
for thread switching)

 L1 caches: 16KB I, 8KB D, 64-byte block size
(misses to L2 23 cycles with no contention)

 L2 caches: 4 separate L2 caches each 750KB.
Misses to main memory 110 cycles assuming no
contention

Copyright © 2012, Elsevier Inc. All rights reserved.

28

Sun T1

 Relative change in the miss rate and latency
when executing one thread per core vs 4 threads
per core (TPC-C)

Copyright © 2012, Elsevier Inc. All rights reserved.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L1 I miss
rate

L1 D miss
rate

L2 miss
rate

L1 I miss
latency

L1 D miss
latency

L2 miss
latency

29

Sun T1

 Breakdown of the status on an average thread.
Ready means the thread is ready, but another
one is chosen – The core stalls only if all the 4
threads are not ready

Copyright © 2012, Elsevier Inc. All rights reserved.

0%

20%

40%

60%

80%

100%

120%

TPC‐C SPECJBB00 SPECWeb99

Not ready

Ready

Executing

30

Sun t1

 Breakdown of the causes for a thread being not
ready

Copyright © 2012, Elsevier Inc. All rights reserved.

0%

20%

40%

60%

80%

100%

120%

TPC‐C SPECJBB00 SPECWeb99

Other

Pipeline delay

L2 miss

L1 D miss

L1 I miss

