Hardware-Based Speculation

= EXxecute instructions along predicted execution
paths but only commit the results if prediction
was correct

= Instruction commit: allowing an instruction to
update the register file when instruction is no
longer speculative

= Need an additional piece of hardware to prevent
any irrevocable action until an instruction
commits

uonalpald youelig

= Need to separate executing the instruction to
pass data to other instructions from completing
(performing operations that can not be undone)

Reorder Buffer

= Reorder buffer — holds the result of instruction
between completion and commit (and supply
them to any instruction who needs them just like
the RS in Tomasulo’s)

n Four fields:
= Instruction type: branch/store/register
= Destination field: register number or memory address
= Value field: output value
= Ready field: completed execution?
= Modify reservation stations:

= Operand source is now reorder buffer instead of
functional unit (results are tagged with ROB entry #)

uonalpald youeig

Reorder Buffer

= Register values and memory values are not
written until an instruction commits

= On misprediction:
= Speculated entries in ROB are cleared

uonalpald youelig

» Exceptions:

= Not recognized until it is ready to commit
= 4 stages

= ISSUE

= Execute

= Write Result

= Commit

Reorder Buffer

= [SsSue

= If empty RS and ROB entry - Issue; else stall
= Send operands to RS if available in registers or ROB

= The number of the ROB entry allocated to instruction
is sent to RS to tag the results with

= If operands are not available yet, the ROB entry is
sent to the RS to wait for results on the CDB

Reorder Buffer

s EXxecute

= If one or more operands are not available, monitor the
CDB.

= When the result is broadcast on the CDB (we know
that from the ROB entry tag) copy it

= When all operands are ready, start execution
= Write Result

= When execution is completed, broadcast the result on
the CDB tagged with ROB entry #

= Results are copied to ROB entry and all waiting RS

s Execute out of order, commit in order.

Reorder buffer

= When an instruction reaches the head of the
ROB and the result is ready in the buffer,

= If ALU op write it to the register file and remove
instruction from ROB

= If the instruction is a store, write it to the memory and
remove the instruction from the ROB

= If the instruction is a branch, if prediction is correct,
remove it from the ROB. If misprediction flush the
ROB and start from the correct successor.

= Solutions:
» Statically scheduled superscalar processors
= VLIW (very long instruction word) processors
= dynamically scheduled superscalar processors

Multiple Issue and Static Scheduling

= To achieve CPI < 1, need to complete multiple
instructions per clock

Buinpayds aneis pue anss| ajdniniA

Multiple Issue

by the compiler

Issue Hazard Distinguishing
Common name structure detection Scheduling characteristic Examples
Superscalar Dynamic Hardware Static In-order execution Mostly in the
(static) embedded space:
MIPS and ARM,
including the ARM
Coretex A8
Superscalar Dynamic Hardware Dynamic Some out-of-order None at the present
(dynamic) execution, but no
speculation
Superscalar Dynamic Hardware Dynamic with ~ Out-of-order execution Intel Core i3, 15, i7;
(speculative) speculation with speculation AMD Phenom: IBM
Power 7
VLIW/LIW Static Primarily Static All hazards determined Most examples are in
software and indicated by compiler signal processing.
(often implicitly) such as the TI C6x
EPIC Primarilystatic Primarily Mostly static All hazards determined Ttanium
software and indicated explicitly

Buinpayos aness pue anss| ajdnni

VLIW Processors

» Package multiple operations into one instruction

s Example VLIW processor:
= One integer instruction (or branch)
= Two independent floating-point operations
= Two independent memory references

Buinpayds aneis pue anss| ajdniniA

= Must be enough parallelism in the code to fill the
available slots

VLIW Processors

» Disadvantages:
» Statically finding parallelism
= Code size
= No hazard detection hardware
= Binary code compatibility

Buinpayos aness pue anss| ajdnni

VLIW Example

= Source instruction Instruction using result

= FP ALU OP FP ALU OP
= FP ALU OP Store double
= Load double FP ALU OP
= Load Double Store double
Loop: L.D FO,0(R1)
ADD.D F4,F0,F2
S.D 0(R1),F4
DADDUI R1,R1,#-8
BNE R 1,R2,Loop

3

2
1
0

For (1=1000;1>0;1++)

X[]=x[I]+s;

Latency

VLIW Example

= Assume that w can schedule 2 memory

operations, 2 FP operations, and one integer or

branch

Memory Memory FP
reference 1 reference 2 operation 1

LD FQ.0(R1) LD F6,-8(R1)
LD F10,-16(R1) . L
LD F18,-32(R1) LD F22,-40(R1) . ADDD P4,FO,F2

LD F26,-48(R1) ADDD F12,F10,F2
ADDD F20,F18,F2
SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2

SD -16(R1),F12 SD -24(R1),F16
SD 24(R1),F20 SD 16(R1),F24
SD 8(R1),F28

FP Int. op/ Clock

op. 2 branch

ADDD F8,F6,F2
ADDD F16,F14,F2
ADDD F24,F22,F2

DADD R1,R1,#-56

BNEZ R1,LOOP

Dynamic Scheduling, Multiple Issue, and Speculation

= Modern microarchitectures:
= Dynamic scheduling + multiple issue + speculation

= Two approaches:

= Assign reservation stations and update pipeline
control table in half clock cycles
= Only supports 2 instructions/clock
= Design logic to handle any possible dependencies
between the instructions

= Hybrid approaches

uonie|noads pue ‘anss| ajdinny ‘Bulnpayas Jlweuiq

= Issue logic can become bottleneck

Overview of Design

Reorder butfer

From instruction unit

Integer and FP registers

Load/store

operations
Operand
Address unit Floating-point buses
operations

1 Load buffers

E Operation bus
Store LI T

3
H I L2

by
address F{eservat\on‘ f 1
Store 1 stations
data Address
Memory unit FP adders. FP multipliers
Load
data Common data bus (CDB)

. Reg # Data
Instruction
queus I
|

uoire|noads pue ‘enss| ajdnny ‘Bulinpayas olwreuiq

Multiple Issue

Limit the number of instructions of a given class
that can be issued in a “bundle”
= |l.e. one FP, one integer, one load, one store

Examine all the dependencies among the
instructions in the bundle

If dependencies exist in bundle, encode them in
reservation stations

uonie|noads pue ‘anss| ajdinny ‘Bulnpayas Jlweuiq

Also need multiple completion/commit

Example

Loop: LD R2,0(R1) ;R2=array element
DADDIU R2,R2,#1 ;increment R2
SD R2,0(R1) ;store result

DADDIU R1,R1,#8 ;increment pointer
BNE R2,R3,LOOP :branch if not last element

uoire|noads pue ‘enss| ajdnny ‘Bulinpayas olwreuiq

W)

- <

S

Example (No Speculation) 5

3

o

Memory g)

Issuesat Executesat accessat Write CDB at g

Iteration clock cycle clockcycle clock cycle clock cycle o

number Instructions number number number number Comment c

1 LD RZ,0(R1) 1 2 3 4 First issue 8

i DADDIU R2,R2,41 1 se— 6 Wait for LW =

1 SD R2,0(R1) 2 Wait for DADDIU =

1 DADDIU R1,R1,#8 2 4 Execute directly i

1 BNE RZ,R3,L00P 3 | Wait for DADDIU 3

2 LD R2,0(R1) 4 10 Wait for BNE 3

2 DADDIU RZ,R2,#1 4 11 12 Wait for LW _{%

2 SD R2,0(R1) 5 9 13 Wait for DADDIU %

2) DADDIU R1,R1,#8 5 8 9‘ Wait for BNE o

2 BNE R2,R3,L00P 6 13 : Wait for DADDIU

3 LD R2,0(R1) 7 14 15 16 Wait for BNE g

3 DADDIU RZ,R2Z,#1 7 17 18 Wait for LW E_)

3 sD RZ,0(R1) 8 15 19 Wait for DADDIU g

3 DADDIU R1,R1,#8 8 14 15 Wait for BNE S
3 BNE R2,R3,L00P 9 19 Wait for DADDIU

O

<

=)

Example :

3

(9]

Write ((/3.)

Issues Executes Readaccess CDBat Commits g

Iteration atclock atclock at clock clock at clock o

number Instructions number number number number number Comment c

1 LD R2,0(R1) 1 2 3 F—>5 First issue 8

1 DADDIU RZ,R2,#1 1 S e— 6— 37 Wait for LW =

1 sD R2,0(R1) 2 3 7 Wait for DADDIU =

1 _DADDIU R1,R1,#8 2 3 4 8 Commit in order 'C__S

e . (¢]

1 BNE R2,R3,L00P 3 7 S| Wait for DADDIU _

2 LD R2,0(R1) 4 5 6 7 9 No execute delay %

c

2 DADDIU R2,R2,#1 4 8 9 10 Wait for LW o

2 SD R2,0(R1) 5 6 10 Wait for DADDIU g

2 DADDIU R1,R1,#8 5 6 7 11 Commit in order o

2 BNE R2,R3, L0l 6 10 1] Wait for DADDIV _g)

3 S0 RZ,0(RD) 7 5] i) 2 Earliest possible @

3 DADDIU R2,R2,#1 7 11 12 13 Wait for LW E_,

3 SD R2,0(R1) 8 9 3 Wait for DADDIU g

3 DADDIU R1,R1,#8 8 9 10 14 Executes earlier =)
3 BNE R2,R3,L00P 9 13 14 Wait for DADDIU

Thread level parallelism

ILP is used in straight line code or loops

Cache miss (off-chip cache and main memory) is
unlikely to be hidden using ILP.

Thread level parallelism is used instead.

Thread: process with own instructions and data

» thread may be a process part of a parallel program of
multiple processes, or it may be an independent
program

= Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to
execute

100

990

. memory conflict
long fp

short fp

long integer

- short integer

load delays

: D control hazards

1 | B8] branch misprediction

BN ceace miss

5 IID icache miss

N [E aub miss

N [iub miss

- . processor busy

From: Tullsen, Eggers, and

Levy,

“Simultaneous Multithreading:

Maximizing On-chip

Parallelism, ISCA 1995.

80

Y
=)

Percent of Total Issue Cycles
2

Applications

Thread Level parallelism

= Multithreading: multiple threads to share the functional
units of 1 processor via overlapping

= processor must duplicate independent state of each thread e.g.,
a separate copy of register file, a separate PC, and for running
independent programs, a separate page table

= memory shared through the virtual memory mechanisms, which
already support multiple processes

= HW for fast thread switch; much faster than full process switch ~
100s to 1000s of clocks

= When to switch?
= Alternate instruction per thread (fine grain)

= When a thread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)

Fine-Grained Multithreading

= Switches between threads on each instruction,
causing the execution of multiples threads to be
interleaved

= Usually done in a round-robin fashion, skipping
any stalled threads

= CPU must be able to switch threads every clock

= Advantage is it can hide both short and long
stalls, since instructions from other threads
executed when one thread stalls

» Disadvantage is it slows down execution of
individual threads, since a thread ready to
execute without stalls will be delayed by
instructions from other threads

s Used on Sun's T1

Coarse-Grained Multithreading

» Switches threads only on costly stalls, such as L2 cache
misses
= Advantages
= Need to have very fast thread-switching
= Doesn’t slow down thread, since instructions from
other threads issued only when the thread encounters
a costly stall
» Disadvantage is hard to overcome throughput losses
from shorter stalls, due to pipeline start-up costs
= Since CPU issues instructions from 1 thread, when a
stall occurs, the pipeline must be emptied or frozen
= New thread must fill pipeline before instructions can
complete
= Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of high cost
stalls, where pipeline refill << stall time

Simultanuous Multithreading SMT

= Fine-grained multithreading implemented on top
of multiple-issued dynamically scheduled
processor.

= Multiple instructions from different threads.

T

SM

Two threads, 8 Units

One thread, 8 Units

N

Multithreading

Simultaneous

S HEBUEODBEUO0O0O
WDDEDDDDEEHE
D

OOOBEOOAO AR
OAO0AO0OOO0O0#

Multithreading

Z)7|HEE|~{E~|]
N\ 7RI AN 7B,

essing

3
DODEDE00DEnE0

d Mult

I I |
g I 77
¢ DO O0OWEEOOOE L
s IO0OOWEEOOOEE
(&)

|
i 7 o+ o
¢ OKXIE DO OEOL
T OWOEBROWOEEDOM

s JODOUOooogan
sULOO0OOU0ononn
s 000000o0o00d
FO0O00O0O00UIOOO0O0O

aine

B Thread 5
] Idle slot

[] Thread 3
(] Thread 4

[] Thread 1

(8942 Jossaooud) swip

Thread 2

Sun T1

s Focused on TLP rather than ILP
= Fine-grained multithreading
» 8 cores, 4 threads per core, one shared FP unit.

» 6-stage pipeline (similar to MIPS with one stage
for thread switching)

» L1 caches: 16KB |, 8KB D, 64-byte block size
(misses to L2 23 cycles with no contention)

m L2 caches: 4 separate L2 caches each 750KB.
Misses to main memory 110 cycles assuming no
contention

Sun T1

= Relative change in the miss rate and latency
when executing one thread per core vs 4 threads
per core (TPC-C)

1.8
1.6
1.4

24—
il N I L B = .
(EEEE B B -,
06+ — —
04— —— L B
02+—~ — — — — —
0

LlImiss Ll1Dmiss L2miss Lllmiss L1Dmiss L2 miss
ral rate rate latency latency latency

Sun T1

120%

100% -

80% -

60% -

40% -

20% -

0% -

TPC-C

SPECJBBOO

SPECWeb99

= Breakdown of the status on an average thread.
Ready means the thread is ready, but another
one is chosen — The core stalls only if all the 4
threads are not ready

1 Not ready
® Ready

™ Executing

Sun t1l

ready

120%

100% -

80% -

60% -

40% -

20% -

0% -

TPC-C

SPECJBBOO

SPECWeb99

= Breakdown of the causes for a thread being not

m Other

M Pipeline delay
L2 miss

L1 D miss

HL11miss

