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Hardware-Based Speculation
 Execute instructions along predicted execution 

paths but only commit the results if prediction 
was correct

 Instruction commit:  allowing an instruction to 
update the register file when instruction is no 
longer speculative

 Need an additional piece of hardware to prevent 
any irrevocable action until an instruction 
commits

 Need to separate executing the instruction to 
pass data to other instructions from completing 
(performing operations that can not be undone)
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Reorder Buffer

 Reorder buffer – holds the result of instruction 
between completion and commit (and supply 
them to any instruction who needs them just like 
the RS in Tomasulo’s)

 Four fields:
 Instruction type:  branch/store/register
 Destination field:  register number or memory address
 Value field:  output value
 Ready field:  completed execution?

 Modify reservation stations:
 Operand source is now reorder buffer instead of 

functional unit (results are tagged with ROB entry #)
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Reorder Buffer

 Register values and memory values are not 
written until an instruction commits

 On misprediction:
 Speculated entries in ROB are cleared

 Exceptions:
 Not recognized until it is ready to commit

 4 stages
 Issue
 Execute
 Write Result
 Commit
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Reorder Buffer

 Issue
 If empty RS and ROB entry  Issue; else stall

 Send operands to RS if available in registers or ROB

 The number of the ROB entry allocated to instruction 
is sent to RS to tag the results with

 If operands are not available yet, the ROB entry is 
sent to the RS to wait for results on the CDB
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Reorder Buffer

 Execute
 If one or more operands are not available, monitor the 

CDB.

 When the result is broadcast on the CDB (we know 
that from the ROB entry tag) copy it

 When all operands are ready, start execution

 Write Result
 When execution is completed, broadcast the result on 

the CDB tagged with ROB entry #

 Results are copied to ROB entry and all waiting RS

 Execute out of order, commit in order.
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Reorder buffer

 When an instruction reaches the head of the 
ROB and the result is ready in the buffer, 
 If ALU op write it to the register file and remove 

instruction from ROB

 If the instruction is a store, write it to the memory and 
remove the instruction from the ROB

 If the instruction is a branch, if prediction is correct, 
remove it from the ROB. If misprediction flush the 
ROB and start from the correct successor.
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Multiple Issue and Static Scheduling

 To achieve CPI < 1, need to complete multiple 
instructions per clock

 Solutions:
 Statically scheduled superscalar processors
 VLIW (very long instruction word) processors
 dynamically scheduled superscalar processors
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VLIW Processors

 Package multiple operations into one instruction

 Example VLIW processor:
 One integer instruction (or branch)
 Two independent floating-point operations
 Two independent memory references

 Must be enough parallelism in the code to fill the 
available slots
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VLIW Processors

 Disadvantages:
 Statically finding parallelism
 Code size
 No hazard detection hardware
 Binary code compatibility
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VLIW Example

 Source instruction Instruction using result Latency

 FP ALU OP FP ALU OP 3

 FP ALU OP Store double 2

 Load double FP ALU OP 1

 Load Double Store double 0
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For (I=1000;I>0;I++)

x[I]=x[I]+s;

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2 
S.D 0(R1),F4 
DADDUI R1,R1,#-8 
BNE R 1,R2,Loop
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VLIW Example

 Assume that w can schedule 2 memory 
operations, 2 FP operations, and one integer or 
branch
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Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2

LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6

SD -16(R1),F12 SD -24(R1),F16 DADD R1,R1,#-56 7

SD 24(R1),F20 SD 16(R1),F24 8

SD 8(R1),F28 BNEZ R1,LOOP 9
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Dynamic Scheduling, Multiple Issue, and Speculation

 Modern microarchitectures:
 Dynamic scheduling + multiple issue + speculation

 Two approaches:
 Assign reservation stations and update pipeline 

control table in half clock cycles
 Only supports 2 instructions/clock

 Design logic to handle any possible dependencies 
between the instructions

 Hybrid approaches

 Issue logic can become bottleneck
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 Limit the number of instructions of a given class 
that can be issued in a “bundle”
 I.e. one FP, one integer, one load, one store

 Examine all the dependencies among the 
instructions in the bundle

 If dependencies exist in bundle, encode them in 
reservation stations

 Also need multiple completion/commit
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Loop: LD R2,0(R1) ;R2=array element

DADDIU R2,R2,#1 ;increment R2

SD R2,0(R1) ;store result

DADDIU R1,R1,#8 ;increment pointer

BNE R2,R3,LOOP ;branch if not last element
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Thread level parallelism

 ILP is used in straight line code or loops

 Cache miss (off-chip cache and main memory) is 
unlikely to be hidden using ILP.

 Thread level parallelism is used instead.
 Thread: process with own instructions and data

 thread may be a process part of a parallel program of 
multiple processes, or it may be an independent 
program

 Each thread has all the state (instructions, data, PC, 
register state, and so on) necessary to allow it to 
execute
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From: Tullsen, Eggers, and 
Levy,

“Simultaneous Multithreading: 
Maximizing On-chip 
Parallelism, ISCA 1995.
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Thread Level parallelism

 Multithreading: multiple threads to share the functional 
units of 1 processor via overlapping
 processor must duplicate independent state of each thread e.g., 

a separate copy of register file, a separate PC, and for running 
independent programs, a separate page table

 memory shared through the virtual memory mechanisms, which 
already support multiple processes

 HW for fast thread switch; much faster than full process switch 
100s to 1000s of clocks

 When to switch?
 Alternate instruction per thread (fine grain)

 When a thread is stalled, perhaps for a cache miss, another 
thread can be executed (coarse grain)
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Fine-Grained Multithreading
 Switches between threads on each instruction, 

causing the execution of multiples threads to be 
interleaved 

 Usually done in a round-robin fashion, skipping 
any stalled threads

 CPU must be able to switch threads every clock
 Advantage is it can hide both short and long 

stalls, since instructions from other threads 
executed when one thread stalls 

 Disadvantage is it slows down execution of 
individual threads, since a thread ready to 
execute without stalls will be delayed by 
instructions from other threads

 Used on Sun’s T1

Copyright © 2012, Elsevier Inc. All rights reserved.
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Coarse-Grained Multithreading

 Switches threads only on costly stalls, such as L2 cache 
misses

 Advantages 
 Need to have very fast thread-switching
 Doesn’t slow down thread, since instructions from 

other threads issued only when the thread encounters 
a costly stall

 Disadvantage is hard to overcome throughput losses 
from shorter stalls, due to pipeline start-up costs
 Since CPU issues instructions from 1 thread, when a 

stall occurs, the pipeline must be emptied or frozen 
 New thread must fill pipeline before instructions can 

complete 
 Because of this start-up overhead, coarse-grained 

multithreading is better for reducing penalty of high cost 
stalls, where pipeline refill << stall time
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Simultanuous Multithreading SMT

 Fine-grained multithreading implemented on top 
of multiple-issued dynamically scheduled 
processor.

 Multiple instructions from different threads.
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SMT
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Multithreading
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Sun T1

 Focused on TLP rather than ILP

 Fine-grained multithreading

 8 cores, 4 threads per core, one shared FP unit.

 6-stage pipeline (similar to MIPS with one stage 
for thread switching)

 L1 caches: 16KB I, 8KB D, 64-byte block size 
(misses to L2 23 cycles with no contention)

 L2 caches: 4 separate L2 caches each 750KB. 
Misses to main memory 110 cycles assuming no 
contention
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28

Sun T1

 Relative change in the miss rate and latency 
when executing one thread per core vs 4 threads 
per core (TPC-C)
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Sun T1

 Breakdown of the status on an average thread. 
Ready means the thread is ready, but another 
one is chosen – The core stalls only if all the 4 
threads are not ready
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Sun t1

 Breakdown of the causes for a thread being not 
ready
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