Pipeline Review

Review

e Covered in EECS2021 (was CSE2021)
 Just a reminder of pipeline and hazards

 If you need more details, review 2021

materials

10/31/2014

The basic MIPS Processor

Instructice fetch

Execute’
Irstrastion degoder’ address
register fetch cakulation

Memary
BCRSE

, g;wu E

Instruction
My

Wrile:
back

FIGURE 3.1 The implementation of the DLX datapath allows every instruction to be executed in four or five clock

cycles.
P [] | []
IFD ID/EX MEMWE
4
M
u Branch
x laken
Be.10
PC
IRyy e
) A 11.15 O
memory =1 ¥ pEpwgn |REBstEE
Drata
™ memory |l
|
18 Sign
Tand

oN

FIGURE 3.4 The datapath is pipelined by adding a set of registers, one between each pair of pipe stages.

10/31/2014

Performance of pipelining

Pipelining does not reduce the time to execute the
instruction (it actually increases it). It increases the
throughput.

We can not skip stages anymore, and the pipeline cycle =
time for longest cycle longest cycle

Example: a machine with 10-ns cycle, it takes 4 cycles for
ALU and branches, and 5 for memory (40,20,40%), what is
the effect of the pipelining

Without execution time = 10*(0.6*4+0.4*5)= 44 ns
With pipelining 10+1 (overhead)=11
Speedup =4

Performance of Pipelining

The length of a machine clock cycle is determined by the
time required for the slowest pipe stage.

An important pipeline design consideration is to balance
the length of each pipeline stage.

If all stages are perfectly balanced, then the time per
instruction on a pipelined machine (assuming ideal
conditions with no stalls):

Time per instruction on unpipelined machine

Number of pipe stages

Under these ideal conditions:

— Speedup from pipelining equals the number of pipeline stages: n,
— One instruction is completed every cycle, CPI =1.

10/31/2014

cct § ccz | €G3 | CC4 § CCS | CC6 § CGT i cca i cce

FIGURE 3.3 The pipeline can be thought of as a series of datapaths shifted in time.

Hazards

There are situation called hazards that
prevents the continuous flow of instructions
in the pipe

Structural hazards: resource conflicts

Data hazards: instruction depends on the
results from a previous instruction that is
not ready yet.

Control hazards: branches (we don’t know
the address of the next instruction)

10/31/2014

Performance

* Hazards in pipelines may make it necessary to stall
the pipeline by one or more cycles and thus
degrading performance from the ideal CPI of 1.

CPI pipelined = Ideal CPI + Pipeline stall clock cycles per
instruction

* When all instructions take the same number of cycles and is
equal to the number of pipeline stages then:

Speedup = Pipeline depth /(1 + Pipeline stall cycles per
instruction)

Structural Hazards

* When we pipeline a machine, the overlapped
instruction execution requires pipelining of functional
units and duplication of resources to allow all possible
combinations of instructions in the pipeline.

* If aresource conflict arises due to a hardware resource
being required by more than one instruction in a single
cycle, and one or more such instructions cannot be
accommodated, then a structural hazard has occurred,
for example:

* One example is when we have a single memory for
both instructions and data.

10/31/2014

Structural Hazards

Time fin clock cycles)

cc1 ccz ccs cc4 €cs cce ccr cce

BBt N EY

3.6 A machine with only one memory port will generate a conflict whenever a memory reference occurs.

Data Hazards

Pipelining changes the relative timing of the instructions by overlapping their
execution.

If the timing of read/write accesses to the operands is changed, that might
result in incorrect execution

Example:
ADD R1, R2, R3
SUB R4, R1, R5
AND R7, R1, R6
OR R8, R1, R9
XOR R10,R1,R11

— All the instructions after ADD use the result of the ADD instruction (ready
in WB stage)
— Without proper precautions, SUB will read the old value in R1

— SUB, AND, and OR instructions need to be stalled for correct execution.

10/31/2014

Time (in clock cyciss)

[o{oh] ccz2 [o{oh:] CCE CCB

. cCa

ADD RLR2,R3 HBE—H_E{";EQ [:

SUB R4RLR5 X E E g «I-Eﬂ ~Esg
s =

AND R;_E,Rl,Rs X
OR R8,R1,R9 X
XOR RI1O0,R1,R3 \ Lﬂagj_
Forwarding

. It is one thing to read operand before it is written, and
between requesting an operand before it is produced.

. Results of ADD is written in CC 5, read by SUB in CC 3

. BUT, the results of ADD is produced in CC 3, requested by
SUBinCC4

J We can use Forwarding

1. The ALU result from EX/MEM register is always fed back to the
input of the ALU

2. If the forwarding hardware detects that if the previous ALU op
writes to a register that is the source of the current ALU op, use a
MUX to choose the fed back value instead of source register

— We need to forward results not only from previous instruction, but
from an instruction that started 3 cycles earlier

10/31/2014

Forwarding

Time
cci cc2 cCc3 cC4 €Ch

3.10 A set of instructions that depend on the ADD result use forwarding paths to avoid the data hazard.

Forwarding

* Consider the following sequence

ADD R1, R2, R3
LW R4, O(RL)
sw 12(R1), R4

To prevent stalls, we need to forward the values
in R1 and R4 from the pipeline registers to the
inputs of the ALU and data memory.

* We may require a forwarding path from any
pipeline register to the input of any functional
unit

10/31/2014

10/31/2014

Time {in clock cyclas)

ceA cog coa [=1+) e =]

ADD R1,H2,R3

LW R4, 0[RT)

Program axsculion arder {in instructions)

SW 12(R1}, R4

FIGURE 3.11 Stores require an operand during MEM, and forwarding of that operand is shown here.

Load-Use Data Hazard

Time (in clock cycles)
CcC1 cc2 ccs CC4 CCs cco cc7 ccs cco

Program
execution
order

(in instructions) -

Iw $2, 20($1) Reg|

and $4, 52, §5 :ReEI:
or $8, $2, $6 @—

y

add $9, 54, $2

slt $1, $6, $7

Chapter 4 — The Processor —
18

JI4u3 N

S 0Q3Q

Cycle 1 Cycle 2 Cycle 3i Cycle 4 Cycle 5! Cycle 6: Cycle 7

Load [t lﬂ I.ﬁ o ﬂ
Instr 1 IIB I.B [omen) ﬂ

Instr 2 é

Stall

Instr 3 it 5K "B e d

Compiler Scheduling for Data Hazards

* Compiler may try to rearrange the code in
order to avoid stalls.

* For example, avoid generating a code where
there is a load followed by the immediate
use of the loaded value

* Example, consider the code segment

A=b+cC

D=e-T
Here i1s two way of generating
code

10/31/2014

10

EX

LW Rb,b LW Rb,b

LW Rc,c LW Rc,c
ADD Ra,Rb,Rc sy LW Rff

SW 3,Ra ADD Ra,Rb,Rc
LW Rff LW Re,e

LW Re,e SW 3,Ra
SUB Rd,Re,Rf SUB Rd,Re,Rf
SW d,Rd sal sw d,Rd

Control Hazards

Branch instruction IF ID EX MEM WB

Branch successor IF stall stall IF ID EX MEM WB

Branch successor + 1 IF ID EX MEM WB
Branch successor + 2 IF ID EX MEM
Branch successor + 3 IF ID EX
Branch successor + 4 IF ID
Branch successor + 5 IF

o

In order to reduce the branch penalty, we
must do two things

 Find out if the branch is taken or not as soon
as possible

e Compute the taken PC ASAP

10/31/2014

11

Compile Time Solutions

Compiler may decide to predicts during
compilation if the branch is taken or not

Easiest way is to freeze or flush the pipe
(simple)

Predict branch is not taken, proceed as usual
but be careful either not to change the state of
the machine (or back out if you do) until you
know if the prediction was correct or not

Predict taken Useful only if we know the target
address before we know the result of the
comparison (condition)

Scheduling the Branch Delay Slot

In this case, the job of the compiler is to
make the successor instruction valid and
useful (Fig. 3.28)

In (a) the scheduled instruction should be
done anyway, no harm at all

IN (b) and (c) the use of R1 in the branch
condition prevents moving the instruction
to after the branch

In both cases, it must be O.K. to execute the
SUB instruction when the branch will go the
opposite direction

In (b) useful when the branch is taken with
a high probability, the reverse in (c) .

10/31/2014

12

{a) From before

(b) From targat

{c) From fall through

ADD R1, R2, A3

it A2 = 0 then

Delay slot

SUB R4, RS, RG =—

ADDR1, A2, R3

it A1 = 0 then

ADD R1, R2, R2
it R1 =0 then

Delay slhot

SUB R4, RS, AB

-

Becomes Becomes Becomes
ADD R1, R2, R3
g
it A2 =0 then it R1=0then

ADD R1, H2. R3

ADD A1, A2, R3

if B1 = 0 then

SUB R4, A5, R6

SUEB R4, RS, Ré

10/31/2014

13

