Computer Architecture

A Quantitative Approach, Fifth Edition

| Chapter 2

| Memory Hierarchy Design

Introduction

uononpo.nu|

= Programmers want unlimited amounts of memory with
low latency

= Fast memory technology is more expensive per bit than
slower memory

= Solution: organize memory system into a hierarchy
= Entire addressable memory space available in largest, slowest
memory
= Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor
= Temporal and spatial locality insures that nearly all
references can be found in smaller memories

= Gives the allusion of a large, fast memory being presented to the
processor

Memory Hierarchy

uononpo|

L2
o]
CPU a
Memory O bus | Disk storage
©
2 Disk
memo
Ragistar Lavel 1 Leval 2 Level 3 Memary mlir\ingi
raference Cache Cache Cache refarence
Size: 1000 bytes B4 KB 256 KB 2-4MB 4-18 GB 4-18TE
Speed: 300ps 1ns 3-10ns 10-20ns 50-100ns 5-10ms

{a) Memaory hierarchy for server

Memory
bus
Memery

CPU

FLASH
Register Lewel 1 Level 2 Memory n}emory
referance Cache Cache reference relerence
reference reference
Size: 500 bytes B4 KB 258 KB 266512 MB 4-8GB
Spead: 500ps 2ns 10-20ns 50100 ns 25-80us

(b} Memary hierarchy for a personal mobile davice

=
Memory Performance Gap :
Q
§.
100,000
10,000 - rew
§ 1,000
@
£ Processaor,
=]
T 100
[
10 L
Memory
1 v T T T T T
1980 1985 1990 1995 2000 2005 2010
Year

Memory Hierarchy Design

uononpo|

= Memory hierarchy design becomes more crucial
with recent multi-core processors:
= Aggregate peak bandwidth grows with # cores:

= Intel Core i7 can generate two references per core per clock

= Four cores and 3.2 GHz clock
= 25.6 billion 64-bit data references/second +
= 12.8 billion 128-bit instruction references
= =409.6 GB/s!

=« DRAM bandwidth is only 6% of this (25 GB/s)

» Requires:
= Multi-port, pipelined caches
= Two levels of cache per core
= Shared third-level cache on chip

Performance and Power

uononpo.nu|

= High-end microprocessors have >10 MB on-chip

cache
= Consumes large amount of area and power budget

Terminology

s A Block: The smallest unit of information
transferred between two levels.

= Hit: Item is found in some block in the
upper level (example: Block X)

s Miss: Item needs to be retrieved from a

block in the lower level (Block Y)
= Miss Rate =1 - (Hit Rate)

= Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor

Cache operation

s Questions

1. Where a block be placed in the cache
(placement)

2. How is a block is found if it is in the cache
(identification)

3. Which block should be replaced on a
miss (replacement)

4. What happens on a write (write strategy)

Cache Organization: Placement

1 Direct mapped cache: A block can be placed in only one
%oca;tl_on (cache block frame), given by the mapping
unction:
index= (Block address) MOD (Number of blocks in
cache)

7 Eully associative cache: A block can be placed anywhere
In cache. (N0 mapping function).

3 Set associative cache: A block can be Placed ina]
restricted set of places, or cache block frames. A setis a

group of block frames in the cache. A block is first
mapped onto the set and then it can be placed anywhere
within the set. The set in this case is chosen by:

index = (Block address) MOD (Number of sets in
cache)
If there are n blocks in a set the cache placement is called
n-way set-associative.

Direct Mapped Cache

cccccccc
oooooooo
oooooooo

00001 00101 01001 01101 10001 10101 11001 11101

Memory

Direct Mapped Cache ..

3130 ,,,431211 ,,.,21 0
1K = 1024 Blocks I Py l Ij{s‘;|
Each block = one word it 1\20 10 g bata
Tag
Index

Can cache up to
232 byteS = 4 GB Index Valid Tag Data
of memory 1 ‘
Mapping function: °® +
Cache Block frame number = Lo2r
(Block address) MOD (1024) o \}
i.e. index field or A
10 low bit of block address =

Block Address = 30 bits

Direct mapped Cache

Address (showing bit positions)

31...6 15..4 3210

T 1711

1 12 |2 Byt
Hit e e pata
Tag offset
Index Block offset
16 bits 128 bits
vV Tag Data
4K
entries
16 32 32 32 32
G 1 [
Mux
32

Block Address = 28 bits

Index =12 bits

Cache Organization

Fully associatlve: Direct mapped: Set associative:

block 12 can go block 12 can go block 12 can go
anywhere only into block 4 anywherg in set 0
{12 mod 8) (12 mod 4)

Block 01234567 Block 01234587 Block 01234567
no. no. no.

Cache

g e R Qg

Block frame address

Block 111 1 1 222223
N+ 0123456788012340678901234567890

—w

Memory

Cache Organization

= Each block frame in cache has an address tag.
= The tags of every cache block that might contain the required
data are checked in parallel.
= Avalid bit is added to the tag to indicate whether this entry
contains a valid address.
= The address from the CPU to cache is divided into:
= A block address, further divided into:
= Anindex field to choose a block set in cache.
. (no index field when fully associative).
= Atag field to search and match addresses in the selected set.
= A block offset to select the data from the block.

Block Address
Index

«—

Cache Organization

Physical Memory Address Generated by CPU

Mapping function:

Index size = log2(Total number of blocks/associativity)

Block Address
Index

Tag size = address size - index size - offset size \

Cache set or block frame number = Index =

= iBIock Addressi MOD iNumber of Setsi

Block offset size = log2(block size)

Number of Sets

1024 block frames
Each block = one word
4-way set associative
1024 / 4= 256 sets

Can cache up to
2% pytes = 4 GB
of memory

Block Address = 30 bits

Index = 8 bits

Set Associative: 4KB 4Way

Address
3130...12111098...3210

‘|\22)
;

Index V Tag Data V Tag Data V Tag Data vV Tag Data

0
1
2

253
254
255

22 32

l_§> I_S:) Béa"

Mapping Function: Cache Set Number = index= (Block address) MOD (256"t Data

‘ | e
%J 4-to-1 multiplexor

Miss

Associativity:
Size

16 KB

64 KB

256 KB

4-way
LRU Random
4.67% 5.29%
1.54% 1.66%
1.13% 1.13%

