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Modulation

1 Purpose

In this lab, you will be introduced to random variables and stochastic processes. Using MATLAB, you
will learn how to generate random variables of any known power spectral density (PSD) through a linear,
time invariant (LTI) system representation whose impulse response is derived from the PSD. You will also
implement a quadrature amplitude modulator and demodulator as a prototype communication system. The
lab will also serve as a review of MATLAB.

The learners will complete the following three simulations in MATLAB and submit their solutions along with
a soft copy of the code in the form of a report.

2 Objectives

By the end of this project, you will be able to:

1) Generate random variables of commonly used probability density functions (PDFs) including uniform
and Gaussian PDFs.

2) Derive and plot the autocorrelation function as well as the PSD of a sequence of random variables.

3) Implement a quadrature amplitude modulator and demodulator widely used in many digital radio com-
munications and data communications applications.

3 References

1) Handouts on “Probability and Random Variables” available on the course homepage.

2) Bernard Sklar text: Sections 1.5 - 1.7. Pages 20 – 50.
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4 Introduction

As covered in class, a random variable is a function that associates a real number with each element in the
sample space of a random experiment. For example, the sample space giving a detailed description of each
possible outcomes when three electronic components are tested may be written as S = NNN, NND, NDN,
NDD, DNN, DND, DDN, DDD, where N denotes a non-defective and D denotes a defective component.

A natural concern is the number of defective components that occur. If we assign a random variable X that
counts the number of defective components, then each event or point in the sample space can be assigned
numerical value of 0, 1, 2, or 3. For the sample point NNN, the value of X is 0 and for DDN, X has a value
of 2. Similarly, for the rest of the sample points. The random variable considered in the above example is
a discrete random variable because its set of possible values is countable. When a random variable can take
on values on the continuous scale, it is called a continuous random variable. Such is the case, for example,
when one conducts an investigation measuring the distances that a certain make of automobile travels over
a prescribed course in 5 litres of gasoline. Assuming distances to be a random variable measured with any
degree of accuracy, say up to two decimal points, then clearly we have an infinite number of possible distances
in the sample space. For further discussion on random variables, refer to the handout on random variables
available on the course home page.

A (one-dimensional) random process is a scalar function x(t) where t is usually time for which the future
evolution is not determined uniquely by any set of initial data or at least by any set that we know. In other
words, a random process, is just a fancy phrase that means unpredictable function.

An example of a random process is the voltage measured across a resistor in an RLC circuit. The voltage is a
function of time hence the notation v(t) is used to represent it. Second, each time the voltage is measured you
would get a different waveform (referred to as an ensemble). Therefore, the sample space of a random process
consists of a number of waveforms varying with time instead of a combination of numbers as observed with
the random variable. If on the other hand, we fix time t = t0 in the sample space then each ensemble will
produce a single number. The combination of these numbers across all ensembles can be treated as a random
variable.

A particular category of random process is one where the mean of the random variable obtained by fixing
time is constant (independent of time) and the autocorrelation between two random variables obtained by
fixing time at two different instants is only dependent on the time difference between the two instants. Such
a random process is called a wide sense stationary (WSS) process, which has wide applications in digital
communication including modelling of noise.

In this lab, you will use MATLAB to generate random variables and random processes through three simula-
tions.

5 Generation of a Gaussian Sequence

In the first simulation, you are required to generate 1000 pairs of Gaussian random variables (x1,x2) that have
mean vector

m = E
([

x1
x2

])
=

[
0.5
0.5

]
(1)

and covariance matrix

C =

[
1 0.5

0.5 1

]
(2)
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where E(·) is the expectation operator.

Problem 1 In MATLAB, the function randn generates random variables with Gaussian distribution having mean
zero and variance one. Write a function based on randn that will generate the correlated variables
(x1,x2) defined above.

Problem 2 For the random variables generated above, determine the mean of the samples (x1,x2), i= 1,2, . . . ,1000,
using the relationships

m1 =
1

1000

1000

∑
i=1

x1i (3)

m2 =
1

1000

1000

∑
i=1

x2i. (4)

Note that x1i refers to an ith sample of the x1 random variable (and same idea for x2).

Problem 3 Compare the values obtained from the samples you processed in the problem above with the theoretical
values we intended to achieve in (1). Why are the two different? Now, increase the number of samples
to 10000. Does this affect your answer in any way? Has the approximation improved?

Problem 4 Repeat Problem 2 but now calculate the covariances. The analytical expression for the covariances are

Variance of x1: σ
2
1 =

1
1000

1000

∑
i=1

(x1i−m1)
2 (5)

Variance of x2: σ
2
2 =

1
1000

1000

∑
i=1

(x2i−m2)
2 (6)

Covariance of x1 and x2: c12 =
1

1000

1000

∑
i=1

(x1i−m1)(x2i−m2). (7)

6 Filtering of Stochastic Signals

Problem 5 Modify the code of Problem 1 to generate an independent identically distributed (i.i.d.) sequence {xn}
of N = 1000 uniformly distributed random variables in the interval [-0.5, 0.5]. Unlike Problem 1,
you are now dealing with a single random variable with uniform distribution in the interval [-0.5, 0.5].
Calculate the mean and variance of the generated sequence and compare with the theoretical values
obtained directly from the distribution.

Problem 6 The sequence {xn} that you just generated is to be passed through a causal and stable linear filter with
impulse response

h[n] =

{
(0.95)n, for n≥ 0

0 elsewhere. (8)

Prove that the recursive equation that describes the output y[n] of this filter as a function of the input
x[n] is

y[n] = 0.95y[n−1]+ x[n] for n≥ 0 and y[−1] = 0. (9)
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Problem 7 Using (9) and the filter function in MATLAB, generate the random sequence y[n] that results if the
input sequence {xn} is filtered by the linear filter. Compute and plot the autocorrelation function Rx[m]
and the power spectral density Gx( f ) using the following relations:

Rx[m] =
1

N−m

N−m

∑
n=1

x[n]x[n+m], for m = 0,1, . . .50 (10)

Rx[m]
F←→ Gx[k]. (11)

Make sure to plot autocorrelation function Rx[m] and the power spectrum Gx[k] for different ensembles
of x[n]. You should see that the two exhibit a significant variability over different ensembles. To
get reasonable results, it is necessary to average the sample autocorrelation and power spectrum over
several ensembles.

Problem 8 Compute and plot the autocorrelation function Ry[m] and the power spectral density Gy( f ) for the
output sequence {yn}. Is there any relationship between the input and output power spectral densities?
Why or why not? If yes, prove the relationship is indeed valid for the above simulation.

7 Quadrature Amplitude Modulation

The following problems serve as an early look at the idea of bandpass modulation, the multiplication of your
information signal by a periodic (usually harmonic) waveform.

Problem 9 Using the code of Problem 5, generate two i.i.d. sequences {wcn} and {wsn} of N = 1000 uniformly
distributed random numbers in the interval [-0.5, 0.5]. Compare their respective means and variances
with each other and with the theoretical values.

Problem 10 Each of these sequences is passed through a linear filter with impulse response

h[n] =

{
(0.5)n, for n≥ 0

0 elsewhere. (12)

Prove that the input-output characteristic of the above LTI system, is given by the recursive relation

x[n] = 0.5x[n−1]+w[n] for n≥ 1 and x[0] = 0. (13)

where x[n] is now the output and w[n] the input.

Problem 11 Calculate the resulting output sequences, {xcn} and {xsn}when {wcn} and {wsn} are applied at the input
of the system in Problem 10. After the filter take your output sequences and make {xcn} modulate
the (so called “in-phase”) carrier cos(π/2)n and make the output sequence {xsn} modulates the (so
called “quadrature”) carrier sin(π/2)n. You have multiplied your sequences by sinusoids and thus
have shifted their spectra in the frequency domain. The net bandpass signal is formed by combining
the modulated components as in

z[n] = xcn cos(
15π

8
n)+ xsn sin(

15π

8
n). (14)

Problem 12 Compute and plot the autocorrelation components Rc[m] and Rs[m] for |m| ≤ 10 for the sequences
{xcn} and {xsn} respectively. Also, compute the autocorrelation function Rz[m] for |m| ≤ 10 for the
net bandpass signal z[n]. Is there any relationship between the three autocorrelation functions? As
in Problem 7, you are required to average the sample autocorrelations and power spectrums over
several realizations.
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Problem 13 Use the DFT (calculated using fft function in MATLAB) to compute the power spectra Gc( f ), Gs( f ),
and Gz( f ). Plot the power spectra and comment on the results.

Problem 14 Design a demodulator to retrieve {xcn} and {xsn} from {z[n]}. Implement it in MATLAB and show
that {xcn} and {xsn} can be retrieved without any error.


