1. (5 points)
1.) [1] What comes after the channel coder and is sometimes used to help with synchronization?
line coder
2.) [1] What are the units of a signal's energy spectrum?

$$
J / H z
$$

3.) [1] The continuous, non-periodic signal: $x(t)=\operatorname{rect}(t / T)$ can be further classified as a \ldots ?
energy signal
4.) [1] Besides adding noise and attenuating our signal what else (in one and only one technical word only) can the channel do to it?
distort
5.) [1] Name at least two sub-blocks of an analog-to-digital converter.
sampler, quantizer, encoder
2. (3 points)

A signal possesses the two-sided power spectral density of $10^{-7} f f^{3}[\mathrm{~J}]$ for $|f| \leq 5 \mathrm{kHz}$ (and zero otherwise). What is the average power of the signal? Show units in your final answer.

$$
\begin{aligned}
P_{x} & =2 \cdot \int_{0}^{5 \times 10^{3}} 10^{-7} f^{3} d f \\
& =2 \times\left. 10^{-7} \cdot \frac{f^{4}}{4}\right|_{0} ^{5 \times 10^{3}}=31.25 \mathrm{MW}
\end{aligned}
$$

3. (2 points) The autocorrelation of a NRZ signal of levels $\pm A$ encoding a signal of bit rate R looks like an isosceles triangle centred at 0 with a peak of A^{2} and a base of total length $1 /(2 R)$. For a NRZ signal with power normalized levels ± 2 and $R=3.5 \mathrm{Mbps}$ what is the average power? Show units in your final answer.

$$
\begin{aligned}
& R_{x}(x)=4\left(1-127 \cdot 3.5 \times 10^{4}\right) \\
& P_{x}=R_{x}(0)=4 \mathrm{~W}
\end{aligned}
$$

$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (in free space), $c=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (in media), $1 \mathrm{~km}=10^{3} \mathrm{~m}, 1 \mathrm{~ms}=10^{-3} \mathrm{~s}, 1 \mathrm{Mb}=10^{6} \mathrm{~b}$

$$
\begin{gathered}
\mathcal{F}\{\operatorname{rect}(t / T)\}=T \operatorname{sinc}(f T)=T \sin (\pi f T) / \pi f T \\
\mathcal{F}\{\operatorname{sinc}(t / T)\}=\frac{1}{T} \operatorname{rect}(f T) \\
\mathcal{F}\{1-|\tau| / T\}=T \operatorname{sinc}^{2}(f T) \\
\sin (a+b)=\sin a \cos b+\cos a \sin b, \cos (a+b)=\cos a \cos b-\sin a \sin b \\
\sin (a \pm b)=\sin a \cos b \pm \cos a \sin b, \cos (a \pm b)=\cos a \cos b \mp \sin a \sin b \\
\sin 2 a=2 \sin a \cos a, \cos 2 a=\cos ^{2} a-\sin ^{2} a=2 \cos ^{2} a-1 \\
\cos a=\left(e^{j a}+e^{-j a}\right) / 2, \sin a=\left(e^{j a}-e^{-j a}\right) / j 2, \tan a=\sin a / \cos a \\
\psi_{x}(f)=|X(f)|^{2}, G_{x}(f)=\sum\left|c_{n}\right|^{2} \delta\left(f-n f_{o}\right), G_{x}(f)=\lim _{T \rightarrow \infty}\left|X_{T}(f)\right|^{2} \\
R_{x}(\tau)=\int_{-\infty}^{\infty} x(t) x(t+\tau) \mathrm{d} t, R_{x}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\infty}^{\infty} x(t) x(t+\tau) \mathrm{d} t \\
c_{n}=\int_{-\infty}^{\infty} x(t) \exp \left(-j 2 \pi n f_{o} t\right) \mathrm{d} t \\
\text { NR }[\mathrm{dB}]=10 \log (\mathrm{SNR})
\end{gathered}
$$

