Name: \qquad

1. (3 points) A quantizer is capable of processing signals between +1.5 V and -3.0 V what is the maximum AC signal power of a sine wave that can be linearly processed by such a quantizer?
1.5
-3.0

$$
\begin{aligned}
V_{P P} & =4.5 \quad V_{p}=2.25 \mathrm{~V} \\
x(t) & =V_{p} \cos (2 \pi t / T) \\
P_{A C} & =\sigma_{x}^{2}=\left\langle x^{2}(t)\right\rangle=\frac{1}{T} \int_{0}^{T}\left[V_{p} \cos \left(\frac{2 \pi t}{T}\right)\right]^{2} d t \\
& =\frac{V_{p}^{2}}{T} \int_{0}^{T}\left\{\frac{1}{2}+\frac{1}{2} \cos \left(\frac{4 \pi t}{T}\right)\right\} d t \\
& =\frac{V_{P}^{2}}{T} \cdot \frac{T}{2}=\frac{(2.25)^{2}}{2}=2.53 \mathrm{~W}
\end{aligned}
$$

2. (3 points) An analog signal has been quantized to 16 levels, but the resulting SNR is 25 dB too low. How many bits should I be using in my quantizer to meet the SNR spec?

$$
\begin{aligned}
25 & =6.02 b \\
b & =4.15
\end{aligned}
$$

\therefore need 5 move bits
to get 16 kvals needed 4 bits

$$
\therefore \text { Euantizer needs } 9 \text { bits }
$$

3. (2 points) A $32-\mathrm{kHz}$ signal has been quantized to 15 -bit resolution. What is the minimum time duration of one bit needed to transmit this data? (Assuming only 2-level binary transmission).

$$
\begin{aligned}
& f_{m}=32 \mathrm{kHz} \\
& f_{s} \geq 2 \mathrm{f}_{\mathrm{m}}=64 \mathrm{kMz} \\
& T_{s} \leq \frac{1}{f_{s}}=15.625 \mu \mathrm{~s} \\
& T_{\text {bit }} \leq \frac{T_{s}}{15}=1.04 \mu \mathrm{~s}
\end{aligned}
$$

4. (2 points) Determine the minimum sampling rate necessary to sample and perfectly reconstruct the signal $x(t)=\operatorname{sinc}(12345 t)$ where t is in seconds (s).

$$
\begin{aligned}
\frac{\sin (\pi 12345 t)}{\pi 12345 t} & =\frac{\sin (\pi t / T)}{\pi t / T} \\
\frac{\pi}{T} & =12345 \mathrm{~Hz} \\
T & =\frac{\pi}{12345}=2.544 \times 10^{-4} \mathrm{~s}
\end{aligned}
$$

fin of this signal is

$$
f_{m}=\frac{1}{2 T}
$$

$$
\begin{aligned}
f_{s, \text { min }}=2 f_{m}=\frac{1}{T}=39.3 \mathrm{kHz} \\
39.3 \mathrm{ksps}
\end{aligned}
$$

$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (in free space), $c=2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (in media), $1 \mathrm{~km}=10^{3} \mathrm{~m}, 1 \mathrm{~ms}=10^{-3} \mathrm{~s}, 1 \mathrm{Mb}=10^{6} \mathrm{~b}$

$$
\begin{gathered}
\mathcal{F}\{\operatorname{rect}(t / T)\}=T \operatorname{sinc}(f T)=T \sin (\pi f T) / \pi f T \\
\mathcal{F}\{\operatorname{sinc}(t / T)\}=T \operatorname{rect}(f T) \\
\mathcal{F}\{1-|\tau| / T\}=T \operatorname{sinc}^{2}(f T) \\
\sin (a+b)=\sin a \cos b+\cos a \sin b, \cos (a+b)=\cos a \cos b-\sin a \sin b \\
\sin (a \pm b)=\sin a \cos b \pm \cos a \sin b, \cos (a \pm b)=\cos a \cos b \mp \sin a \sin b \\
\sin 2 a=2 \sin a \cos a, \cos 2 a=\cos ^{2} a-\sin ^{2} a=2 \cos ^{2} a-1 \\
\cos a=\left(e^{j a}+e^{-j a}\right) / 2, \sin a=\left(e^{j a}-e^{-j a}\right) / j 2, \tan a=\sin a / \cos a \\
\psi_{x}(f)=|X(f)|^{2}, G_{x}(f)=\sum\left|c_{n}\right|^{2} \delta\left(f-n f_{o}\right), G_{x}(f)=\lim _{T \rightarrow \infty} \frac{1}{T}\left|X_{T}(f)\right|^{2} \\
R_{x}(\tau)=\int_{-\infty}^{\infty} x(t) x(t+\tau) \mathrm{d} t, R_{x}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-\infty}^{\infty} x(t) x(t+\tau) \mathrm{d} t \\
c_{n}=\int_{-\infty}^{\infty} x(t) \exp \left(-j 2 \pi n f_{o} t\right) \mathrm{d} t
\end{gathered}
$$

