CSE 2021 Computer Organization

Appendix Part 1

The Basics of Logic Design

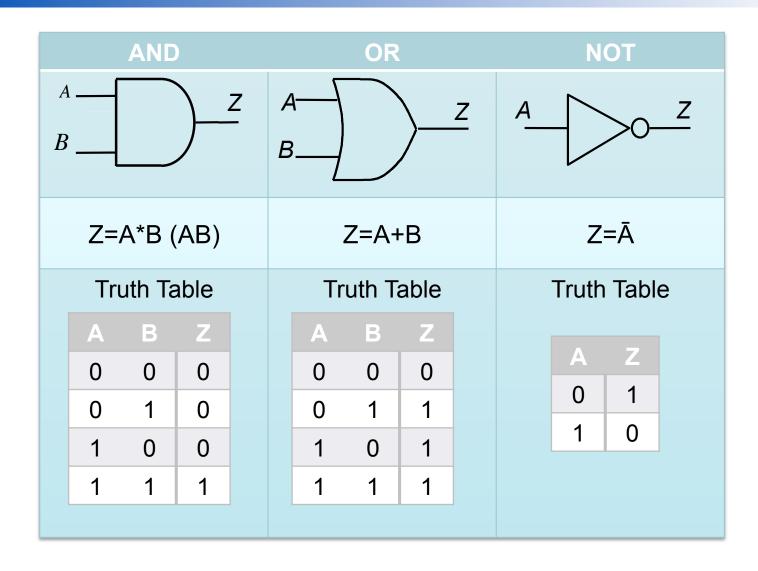
Outline

- Fundamental Boolean operations
- Deriving logic expressions from truth tables
- Boolean Identities
- Simplifying logic expressions using Boolean identities
- Combinational and sequential circuits

Boolean Algebra

- Boolean algebra is the basic math used in digital circuits and computers.
- A Boolean variable takes on only 2 values: {0,1}, {T,F}, {Yes, No}, etc.
- There are 3 fundamental Boolean operations:
 - AND, OR, NOT

Fundamental Boolean Operations



Boolean Algebra

- A truth table specifies output signal logic values for every possible combination of input signal logic values
- In evaluating Boolean expressions, the Operation Hierarchy is: 1) NOT 2) AND 3)
 OR. Order can be superseded using (...)
- **Example:** A = T, B = F, C = T, D = T
- What is the value of $Z = (\overline{A} + B) \cdot (C + \overline{B} \cdot D)$?

$$Z = (\overline{T} + F) \cdot (C + \overline{B} \cdot D) = (F + F) \cdot (C + \overline{B} \cdot D)$$
$$= F \cdot (C + \overline{B} \cdot D) = F$$

Deriving Logic Expressions From Truth Tables

Light must be ON when both switches A and B are OFF, or when both of them are ON.

Truth Table:

A	В	Z
0	0	1
0	1	0
1	0	0
1	1	1

What is the Boolean expression for Z?

Minterms and Maxterms

Minterms

- AND term of all input variables.
- For variables with value 0, apply complements
- Maxterms
 - OR factor with all input variables
 - For variables with value 1, apply complements

A	В	Z	Minterms	Maxterms
0	0	1	$ar{A}.ar{B}$	A + B
0	1	0	$ar{A}$. B	$A + \bar{B}$
1	0	0	$A.ar{B}$	$\bar{A} + B$
1	1	1	AB	$\bar{A} + \bar{B}$

Minterms and Maxterms

- A function with n variables has 2ⁿ minterms (and Maxterms) – exactly equal to the number of rows in truth table
- Each minterm is true for exactly one combination of inputs
- Each Maxterm is false for exactly one combination of inputs

A	В	Z	Minterms	Maxterms
0	0	1	$ar{A}$. $ar{B}$	A + B
0	1	0	$ar{A}$. B	$A + \bar{B}$
1	0	0	$A.ar{B}$	$\bar{A} + B$
1	1	1	AB	$\bar{A} + \bar{B}$

Equivalent Logic Expressions

- Two <u>equivalent</u> logic expressions can be derived from Truth Tables:
- 1. Sum-of-Products (SOP) expressions:
 - Several AND terms OR'd together, e.g.

$$\overrightarrow{ABC} + \overrightarrow{ABC} + \overrightarrow{ABC}$$

- 2. Product-of-Sum (POS) expressions:
 - Several OR terms AND'd together, e.g.

$$(\overline{A} + \overline{B} + C)(A + B + \overline{C})$$

Rules for Deriving SOP Expressions

- Find each row in TT for which output is 1 (rows 1 & 4)
- 2. For those rows write a minterm of all input variables.
- OR together all minterms found in (2): Such an expression is called a Canonical SOP

A	В	Z	Minterms	Maxterms
0	0	1	$ar{A}$. $ar{B}$	A + B
0	1	0	$ar{A}$. B	$A + \bar{B}$
1	0	0	$A.ar{B}$	$\bar{A} + B$
1	1	1	AB	$\bar{A} + \bar{B}$

$$Z = \overline{A} \overline{B} + AB$$

Rules for Deriving POS Expressions

- Find each row in TT for which output is 0 (rows 2 & 3)
- For those rows write a maxterm
- 3. AND together all maxterm found in (2): Such an expression is called a Canonical POS.

Α	В	Z	Minterms	Maxterms
0	0	1	$ar{A}$. $ar{B}$	A + B
0	1	0	$ar{A}$. B	$A + \bar{B}$
1	0	0	$A.ar{B}$	$\bar{A} + B$
1	1	1	AB	$\bar{A} + \bar{B}$

$$Z = (A + \overline{B})(\overline{A} + B)$$

CSOP and **CPOS**

- Canonical SOP: $Z = \overline{A} \overline{B} + AB$
- Canonical POS: Z = (A + B)(A + B)
- Since they represent the same truth table, they should be identical

Verify that
$$Z = \overline{A} \, \overline{B} + AB \equiv (A + \overline{B})(\overline{A} + B)$$

 CPOS and CSOP expressions for the same TT are logically equivalent. Both represent the same information.

Activity 1

Derive SOP and POS expressions for the following TT.

A	В	Carry
0	0	0
0	1	0
1	0	0
1	1	1

Activity 1

Derive SOP and POS expressions for the following TT.

A	В	Carry	Minterms	Maxterms
0	0	0	A'B'	A+B
0	1	0	A'B	A+B'
1	0	0	AB'	A'+B
1	1	1	AB	A'+B'

SOP: Carry=AB

POS: Carry=(A+B)(A+B')(A'+B)

Useful for simplifying logic equations.

	(a)	(b)
1	= A = A	$\overline{\overline{A}} = A$
2	A + false = A (A + 0 = A)	$A \cdot true = A (A \cdot 1 = A)$
3	A + true = true (A + 1 = 1)	$A \cdot false = false (A \cdot 0 = 0)$
4	A + A = A	$A \cdot A = A$
5	$A + \overline{A} = true (A + \overline{A} = 1)$	$A \cdot \overline{A} = \text{false } (A \cdot \overline{A} = 0)$
6	A + B = B + A	$A \cdot B = B \cdot A$
7	A + B + C = (A + B) + C = A + (B + C)	$A \cdot B \cdot C = (A \cdot B) \cdot C = A \cdot (B \cdot C)$
8	$A \cdot (B + C) = A \cdot B + A \cdot C$	$A + B \cdot C = (A + B)(A + C)$
9	$\overline{A + B} = \overline{A} \cdot \overline{B}$	$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$
10	$A \cdot B + A \cdot \overline{B} = A$	$(A + B)(A + \overline{B}) = A$
11	$A + A \cdot B = A$	A(A + B) = A
12	$A(\overline{A} + B) = A \cdot B$	$A + \overline{A} \cdot B = A + B$
13	$A \cdot B + \overline{A} \cdot C + B \cdot C = A \cdot B + \overline{A} \cdot C$	$(A + B)(\overline{A} + C)(B + C) = (A + B)(\overline{A} + C)$

Duals

Identities	Property
1-5	Single variable, foundations of Boolean manipulation
6	Commutative
7	Associative
8	Distributive
9	De Morgan's
10	Combining
11	Absorption
13	Consensus

- The right side is the dual of the left side
 - Duals formed by replacing

AND
$$\rightarrow$$
 OR OR \rightarrow AND 0 \rightarrow 1 1 \rightarrow 0

The dual of any true statement in Boolean algebra is also a true statement.

DeMorgan's laws very useful: 9a and 9b

$$\overline{A+B}=\overline{A.B}$$

$$A \longrightarrow \overline{A+B}$$

$$B \longrightarrow \overline{AB}$$
NOR gate
$$A \longrightarrow \overline{AB}$$
Alt gate rep.

$$AB = A + B$$

$$A \longrightarrow \overline{AB}$$

$$B \longrightarrow \overline{A+B}$$

$$B \longrightarrow \overline{A+B}$$

$$A \longrightarrow$$

Activity 2

Proofs of some Identities:

12b:
$$A + AB = A + B$$

13a:
$$AB + AC + BC = AB + AC$$

Activity 2

Proofs of some Identities:

12b:
$$A + \overline{AB} = A + B$$

12b: $A + \overline{AB} = A + AB + \overline{AB}$ $(A + AB = A(B + 1) = A)$ (Using 11)
 $= A + B$

$$AB + \overline{AC} + BC = AB + \overline{AC}$$

$$= AB + \overline{AC} + (A + \overline{A})BC$$

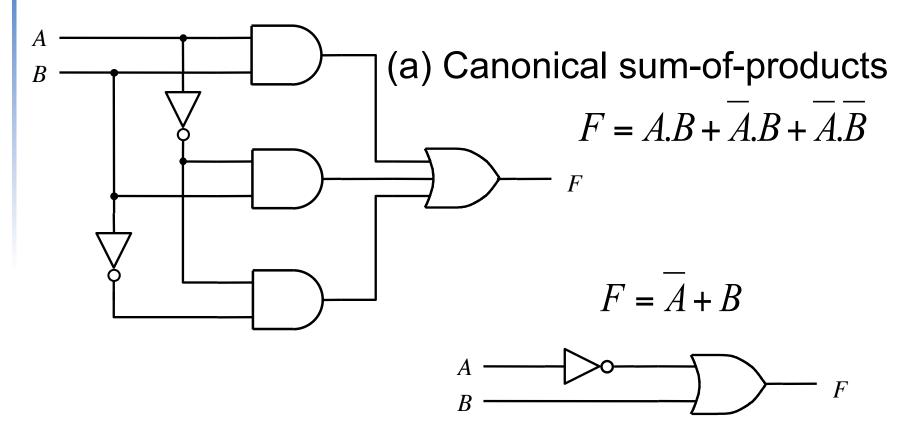
$$= AB + \overline{AC} + ABC + \overline{ABC}$$

$$= AB(C + 1) + \overline{AC}(B + 1)$$

$$= AB + \overline{AC}$$

Simplifying Logic Expressions Using Boolean Identities

Simplifying Logic Equations – Why?



(b) Minimal-cost realization

Simplifying Logic Equations

- Simplifying logic expressions can lead to using smaller number of gates (parts) to implement the logic expression
- Can be done using
 - Boolean Identities (algebraic)
 - Karnaugh Maps (graphical)
- A minimum SOP (MSOP) expression is one that has no more AND terms or variables than any other equivalent SOP expression.
- A minimum POS (MPOS) expression is one that has no more OR factors or variables than any other equivalent POS expression.
- There may be several MSOPs of an expression

Example of Using Boolean Identities

Find an MSOP for

$$F = \overline{X}W + Y + \overline{Z}(Y + \overline{X}W)$$

$$= \overline{X}W + Y + \overline{Z}Y + \overline{Z}\overline{X}W$$

$$= \overline{X}W(1 + \overline{Z}) + Y(1 + \overline{Z})$$

$$= \overline{X}W + Y$$

Activity 3

Find an MSOP for

$$F = V\overline{W}XY + VWYZ + V\overline{X}YZ$$

Activity 3

Find an MSOP for

$$F = V\overline{W}XY + VWYZ + V\overline{X}YZ$$

$$= VY(\overline{W}X + WZ + \overline{X}Z)$$

$$= VY(\overline{W}X + Z(W + \overline{X})) \quad [W + \overline{X} = \overline{\overline{W}X}]$$

$$= VY(\overline{W}X + Z\overline{\overline{W}X}) \quad [A + \overline{A}B = A + B]$$

$$= VY(\overline{W}X + Z)$$

$$= VY(\overline{W}X + VYZ)$$

CSE 2021 Computer Organization

Combinational and Sequential Circuits

Digital Circuit Classification

Combinational circuits

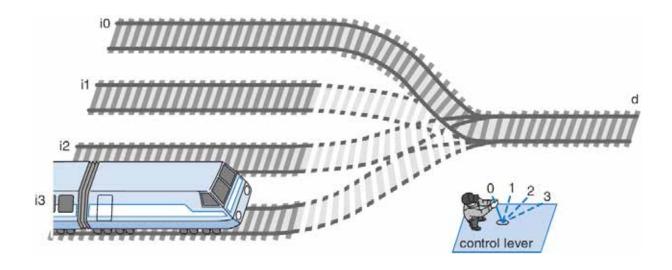
- Output depends only solely on the current combination of circuit inputs
- Same set of input will always produce the same outputs
- Consists of AND, OR, NOR, NAND, and NOT gates
- Sequential circuits
 - Output depends on the current inputs and state of the circuit (or past sequence of inputs)
 - Memory elements such as flip-flops and registers are required to store the "state"
 - Same set of input can produce completely different outputs

CSE 2021 Computer Organization

Combinational Circuits

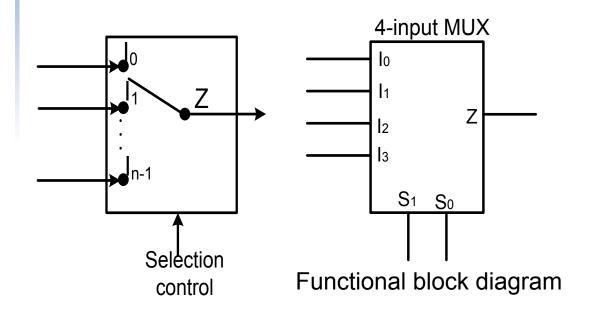
Multiplexer

- A multiplexer (MUX) selects data from one of N inputs and directs it to a single output, just like a railyard switch
 - 4-input Mux needs 2 select lines to indicate which input to route through
 - N-input Mux needs log₂(N) selection lines



Multiplexer (2)

An example of 4-input Mux



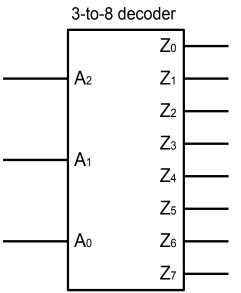
Actual truth table would have 2^6 rows corresponding to I_0 , I_1 , I_2 , I_3 , S_0 and S_1

S ₁	S ₀	Z
0	0	I ₀
0	1	I ₁
1	0	l ₂
1	1	l ₃

Condensed truth table

Decoder

- A decoder is a circuit element that will decode an N-bit code.
- It activates an appropriate output line as a function of the applied N-bit input code



Truth Table

A_2	A ₁	A_0	Z_0	Z ₁	Z_2	Z_3	Z_4	Z_5	Z ₆	Z ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

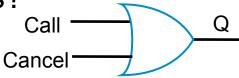
Functional block diagram

CSE 2021 Computer Organization

Sequential Circuits

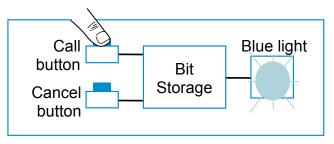
Why Bit Storage?

- Flight attendant call button
 - Press call: light turns on
 - Stays on after button released
 - Press cancel: light turns off
 - Logic gate circuit to implement this?

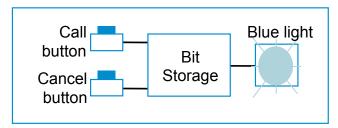


Doesn't work. Q=1 when Call=1, but doesn't stay 1 when Call returns to 0

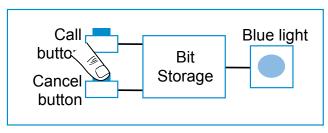
Need some form of "memory" in the circuit



1. Call button pressed – light turns on



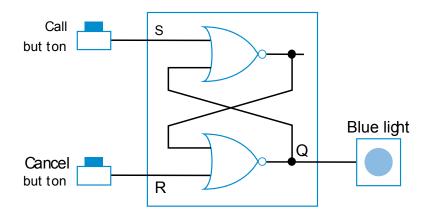
2. Call button released – light stays on



3. Cancel button pressed – light turns off

Bit Storage Using SR Latch

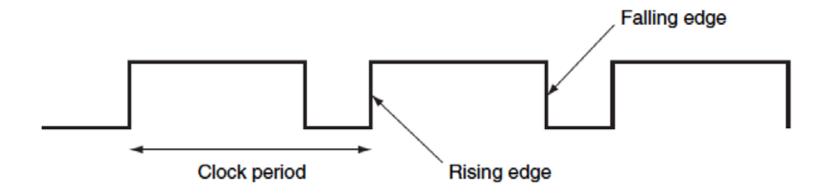
- Simplest memory elements are Latch and Flip-Flops
- SR (set-reset) latch is an un-clocked latch
 - Output Q=1 when S=1, R=0 (set condition)
 - Output Q=0 when S=0, R=1 (reset condition)
 - Problem Q is undefined if S=1 and R=1



Clocks

- Clock period: time interval between pulses
 - example: period = 20 ns
- Clock frequency: 1/period
 - example: frequency = 1 / 20 ns = 50 MHz
- Edge-triggered clocking: all state changes occur on a clock edge.

Freq	Period
100 GHz	0.01 ns
10 GHz	0.1 ns
1 GHz	1 ns
100 MHz	10 ns
10 MHz	100 ns



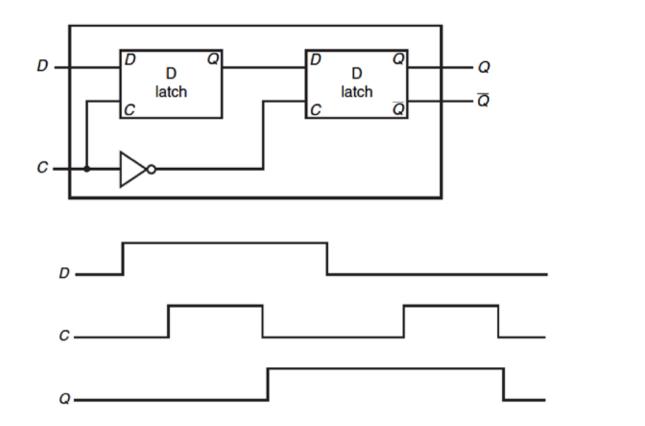
Clock and Change of State

- Clock controls when the state of a memory element changes
- Edge-triggered clocking: all state changes occur on a clock edge.



Clock Edge Triggered Bit Storage

- Flip-flop Bit storage that stores on clock edge, not level
- D Flip-flop
 - Two latches, master and slave latches.
 - Output of the first goes to input of second, slave latch has inverted clock signal (falling-edge trigger)



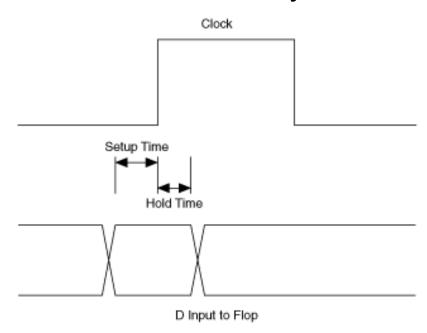
Setup and Hold Time

Setup time

 The minimum amount of time the data signal should be held steady before the clock edge arrives.

Hold time

The minimum amount of time the data signal should be held steady after the clock edge.



N-Bit Register

- Cascade N number of D flip-flops to form a N-bit register
- An example of 8-bit register formed by 8 edge-triggered D flip-flops

