
Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 1

 CSE 2021 Computer Organization

AAppppeennddiixx PPaarrtt 22

Verilog Basics

What is an HDL?
n  A Hardware Description Language (HDL) is

a software programming language used to
model the intended operation of a piece of
hardware.

n  The difference between an HDL and “C”
n  Concurrency
n  Timing

n  A powerful feature of the Verilog HDL is
that we can use the same language for
describing, testing and debugging the
system.

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 2

An Example
module pound_one;
reg [7:0] a,a$b,b,c; // register declarations
reg clk;

initial
 begin
 clk=0; // initialize the clock
 c = 1;
 forever #25 clk = !clk;
 end
/* This section of code implements
 a pipeline */
always @ (posedge clk)
 begin
 a = b;
 b = c;
 end
endmodule

Identifiers
n  Identifiers are names assigned by the user

to Verilog objects such as modules,
variables, tasks etc.

n  An identifier may contain any sequence of
letters, digits, a dollar sign '$' , and the
underscore '_' symbol.

n  The first character of an identifier must be
a letter or underscore; it cannot be a dollar
sign '$' , for example. We cannot use
characters such as '-' (hyphen), brackets,
or '#' in Verilog names (escaped identifiers
are an exception).

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 3

Escaped Identifiers
n  The use of escaped identifiers allow any character

to be used in an identifier.
n  Escaped identifiers start with a backslash (\) and end with

white space (White space characters are space, tabs,
carriage returns).

n  Gate level netlists generated by EDA tools (like DC) often
have escaped identifiers

n  Examples:
n  \/clock = 0;
n  \a*b = 0;
n  \5-6
n  \bus_a[0]
n  \bus_a[1]

 module identifiers; /* Multiline comments in Verilog look like C comments
 and // is OK in here. */
 // Single-line comment in Verilog.
 reg legal_identifier, two__underscores;
 reg _OK,OK_,OK_$,OK_123,CASE_SENSITIVE, case_sensitive;
 reg \/clock ,\a*b ; // Add white_space after escaped identifier.
 //reg $_BAD,123_BAD; // Bad names even if we declare them!
 initial begin
 legal_identifier = 0; // Embedded underscores are OK,
 two__underscores = 0; // even two underscores in a row.
 _OK = 0; // Identifiers can start with underscore
 OK_ = 0; // and end with underscore.
 OK$ = 0; // $ sign is OK.
 OK_123 =0; // Embedded digits are OK.
 CASE_SENSITIVE = 0; // Verilog is case-sensitive (unlike VHDL).
 case_sensitive = 1;
 \/clock = 0; // An escaped identifier with \ breaks rules
 \a*b = 0; // but be careful to watch the spaces!
 $display("Variable CASE_SENSITIVE= %d",CASE_SENSITIVE);
 $display("Variable case_sensitive= %d",case_sensitive);
 $display("Variable \/clock = %d",\/clock);
 $display("Variable \\a*b = %d",\a*b);
 end
 endmodule

An Example

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 4

Simulation Result of the Example

Variable CASE_SENSITIVE= 0
Variable case_sensitive= 1
Variable /clock = 0
Variable \a*b = 0

Logic values
n  Verilog has 4 logic Values:

n  ‘0’ represents zero, low, false, not asserted.
n  ‘1’ represents one, high, true, asserted.
n  ‘z’ or ‘Z’ represent a high-impedance value,

which is usually treated as an 'x' value.
n  ‘x’ or ‘X’ represent an uninitialized or an

unknown logic value--an unknown value is
either '1' , '0' , 'z' , or a value that is in a state of
change.

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 5

Data Types
n  Three data type classes:

n  Nets
n  Physical connections between devices
n  Example: wire a, b;

n  Registers
n  Storage devices, variables.
n  Example: reg a; reg [7:0] bus;

n  Parameters
n  Constants
n  Example: parameter width=32;

 parameter A_string =“hello”;

 CSE 2021 Computer Organization

CCooddee SSttrruuccttuurree
Design Entities
Verilog Module Basics

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 6

Design Entities
n  The module is the basic unit of code in the

Verilog language.
n  Example
 module holiday_1(sat, sun,weekend);
 input sat, sun;
 output weekend;
 assign weekend = sat | sun;
 endmodule

Verilog Module
 Modules contain

 declarations
  functionality
  timing

syntax:
module module_name (signal, signal,... signal) ;
. ; //content of module
.
..
.
endmodule

module name (port_names);

module port declarations

data type declarations

procedural blocks

continuous assignments

user defined tasks & functions

primitive instances

module instances

specify blocks

endmodule

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 7

Module Port Declarations

n  Scalar (1bit) port declarations:
n  port_direction port_name, port_name ... ;

n  Vector (Multiple bit) port declarations:
n  port_direction [port_size] port_name, port_name ... ;

n  port_direction : input, inout (bi-directional) or output
n  port_name : legal identifier
n  port_size : is a range from [msb:lsb]

input a, into_here, george; // scalar ports
input [7:0] in_bus, data; //vectored ports
output [31:0] out_bus; //vectored port
inout [maxsize-1:0] a_bus; //parameterized port

Module Instances

syntax for instantiation:
module_name instance_name (signal, signal,...);

  A module may be instantiated within another module.
  There may be multiple instances of the same module.

module example (a,b,c,d);
input a,b;
output c,d;
. . . .
endmodule

example ex_inst_1(in_1, in_2, w, z);
example ex_inst_2(in_1, in_2, , z); // skip a port

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 8

Gate-level Primitives
n  Verilog has pre-defined primitives that implement

basic logic functions.
n  Structural modeling with the primitives is similar

to schematic level design.
 and nand or nor xor xnor

buf not bufif0 bufif1 notif0 notif1

module
gate_level_ex(in_1,in_2,c);
output c;
input in_1,in_2;

nand (a, in_1, in_2);
not (b, a);
or or_1(c, in_2, b);

endmodule

in_1
in_2 c

b a

or_1

Activity 4
Given the circuit below, develop a Verilog
module for the circuit

n1

n2

q

qBar

set

clear

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 9

Activity 4
Module simple_latch (q, qBar, set, clear);

 input set, clear;
 output q, qBar;
 nand #2 n1(q,qBar,set);
 nand #2 n2(qBar,q,clear);

endmodule

n1

n2

q

qBar

set

clear

User-Defined Primitives
n  We can define primitive gates (a user-defined

primitive or UDP) using a truth-table specification.
The first port of a UDP must be an output port, and
this must be the only output port (we may not use
vector or inout ports).

n  An example
 primitive Adder(Sum, InA, InB);
 output Sum;
 input InA, InB;
 table // inputs : output
 00 : 0;
 01 : 1;
 10 : 1;
 11 : 0;
 endtable
 endprimitive

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 10

Operators
n  Verilog operators (in increasing order of precedence)

n  ?: (conditional)
n  || (logical or)
n  && (logical and)
n  | (bitwise or)
n  ~| (bitwise nor)
n  ^ (bitwise xor)
n  ^~ ~^ (bitwise xnor, equivalence)
n  & (bitwise and)
n  ~& (bitwise nand)
n  == (logical) != (logical) === (case) !== (case)
n  < (lt)
n  <= (lt or equal)
n  > (gt)
n  >= (gt or equal)
n  << (shift left)
n  >> (shift right)
n  + (addition)
n  - (subtraction)
n  * (multiply)
n  / (divide)
n  % (modulus)

 CSE 2021 Computer Organization

Procedural Assignment
Continuous Assignment
Control Statement

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 11

Procedures
n  A Verilog procedure is an always or

initial statement, a task , or a function .
n  The statements within a sequential block

(statements that appear between a begin
and an end) that is part of a procedure
execute sequentially in the order in which
they appear, but the procedure executes
concurrently with other procedures.

Procedural Blocks
n  There are two types of procedural blocks:

n  initial blocks - executes only once
n  always blocks - executes in a loop

n  Multiple Procedural blocks may be used, if so the
multiple blocks are concurrent.

n  Procedural blocks may have:
n  Timing controls - which delays when a statement may be

executed
n  Procedural assignments
n  Programming statements

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 12

Procedural Statement Groups
n  When there is more than one statement within a

procedural block the statements must be grouped.
n  Sequential grouping: statements are enclosed within

the keywords begin and end.
n  An example
 always

begin
a = 5; // executed 1st
c = 4; // executed 2nd
wake_up = 1; // executed 3rd

end

Timing Controls (procedural delays)

n  #delay - simple delay
n Delays execution for a specific number of time steps.

 #5 reg_a = reg_b;

n  @ (edge signal) - edge-triggered timing control
n Delays execution until a transition on signal occurs.
n  edge is optional and can be specified as either posedge or
negedge.
n Several signal arguments can be specified using the
keyword or.
n An example : always @ (posedge clk) reg_a = reg_b;

n  wait (expression) - level-sensitive timing control
n Delays execution until expression evaluates true.
n wait (cond_is_true) reg_a = reg_b;

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 13

Procedural assignments
n  Assignments made within procedural

blocks are called procedural assignments.
n  Value of the RHS of the equal sign is

transferred to the LHS
n  LHS must be a register data type (reg,

integer, real). NO NETS!
n  RHS may be any valid expression or signal

always @ (posedge clk)
begin

a = 5; // procedural assignment
c = 4*32/6; // procedural assignment
wake_up =$time; // procedural assignment

end

Continuous Assignment
n  Continuous assignment assigns a value to a

wire in a similar way that a real logic gate
drives a real wire.

n  The main use for continuous assignments is to
model combinatorial logic.

 module continuous (Ain, Aout);
 input Ain;
 output Aout;
 assign Aout = ~Ain //continuous assignment.
 endmodule

AoutAin

syntax: Explicit continuous assignment:
assign net_name = expression;

where net_name is a net that has been previously declared

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 14

Illustration of Assignment Statements
module assignments

 //... Continuous assignments go here.
 always // beginning of a procedure
 begin // beginning of sequential block
 //... Procedural assignments go here.
 end

endmodule

Control Statements
n  Two types of programming statements:

n  Conditional
n  Looping

n  Programming statements only used in
procedural blocks

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 15

syntax:
if(expression) statement

If the expression evaluates to true then execute the statement

if(expression) statement1
else statement2

If the expression evaluates to true then execute statement1,
if false, then execute statement2.

module if_ex(clk);
 input clk;
 reg red,blue,pink,yellow,orange,color,green;
 always @ (posedge clk)
 if (red || (blue && pink))
 begin
 $display ("color is mixed up");
 color <= 0; // reset the color
 end
 else if (blue && yellow)
 $display ("color is greenish");
 else if (yellow && (green || orange))
 $display ("not sure what color is");
 else $display ("color is black");
endmodule

if and if-else

for
syntax:
for (assignment_init; expression; assignment)

statement or statement_group
  The assignment_init is executed once at the start of
the loop.
  Loop executes as long as expression is true.
  The assignment is executed at the completion of
each loop.

module for_ex1 (clk);
input clk;
reg [31:0] mem [0:9]; // 10x32 memory
integer i;
always @ (posedge clk)
 for (i = 9; i >= 0; i = i-1)

 mem[i] = 0; // init the memory to zeros
endmodule

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 16

Simulating the Verilog Code

n  Verilog code of NAND Latch
Module simple_latch (q, qBar, set, clear);

 input set, clear;
 output q, qBar;
 nand #2 n1(q,qBar,set);
 nand #2 n2(qBar,q,clear);

endmodule

n1

n2

q

qBar

set

clear

Testbench
n  A testbench generates a sequence of input

values (we call these input vectors) that
test or exercise the verilog code.

n  It provides stimulus to the statement that
will monitor the changes in their outputs.

n  Testbenchs do not have a port declaration
but must have an instantiation of the circuit
to be tested.

Morgan Kaufmann Publishers 13 January 2015

Chapter 3 — Arithmetic for Computers 17

A testbench for NAND Latch
Module test_simple_latch;

 wire q, qBar;
 reg set, clear;
 simple_latch SL1(q,qBar,set,clear);
 initial
 begin
 #10 set = 0; clear = 1;

 #10 set = 1;
 #10 clear = 0;

 #10 clear = 1;
 #10 $stop;
 #10 $finish;
 end
 initial
 begin
 $monitor (“%d set= %b clear= %b q=%b qBar=%b”,$time,

 set,clear,q,qBar);
 end

endmodule

