
 Chapter 4 Solutions S-3

4.1

4.1.1 Th e values of the signals are as follows:

RegWrite MemRead ALUMux MemWrite ALUop RegMux Branch

0 0 1 (Imm) 1 ADD X 0

ALUMux is the control signal that controls the Mux at the ALU input, 0 (Reg)
selects the output of the register fi le, and 1 (Imm) selects the immediate
from the instruction word as the second input to the ALU.

RegMux is the control signal that controls the Mux at the Data input to the
register fi le, 0 (ALU) selects the output of the ALU, and 1 (Mem) selects the
output of memory.

A value of X is a “don’t care” (does not matter if signal is 0 or 1)

4.1.2 All except branch Add unit and write port of the Registers

4.1.3 Outputs that are not used: Branch Add, write port of Registers

No outputs: None (all units produce outputs)

4.2

4.2.1 Th is instruction uses instruction memory, both register read ports, the ALU
to add Rd and Rs together, data memory, and write port in Registers.

4.2.2 None. Th is instruction can be implemented using existing blocks.

4.2.3 None. Th is instruction can be implemented without adding new control
signals. It only requires changes in the Control logic.

4.3

4.3.1 Clock cycle time is determined by the critical path, which for the given
latencies happens to be to get the data value for the load instruction: I-Mem
(read instruction), Regs (takes longer than Control), Mux (select ALU
input), ALU, Data Memory, and Mux (select value from memory to be
written into Registers). Th e latency of this path is 400 ps � 200 ps � 30 ps
� 120 ps � 350 ps � 30 ps � 1130 ps. 1430 ps (1130 ps � 300 ps, ALU is
on the critical path).

4.3.2 Th e speedup comes from changes in clock cycle time and changes to the
number of clock cycles we need for the program: We need 5% fewer cycles
for a program, but cycle time is 1430 instead of 1130, so we have a speedup
of (1/0.95)*(1130/1430) � 0.83, which means we actually have a slowdown.

S-4 Chapter 4 Solutions

4.3.3 Th e cost is always the total cost of all components (not just those on the
critical path, so the original processor has a cost of I-Mem, Regs, Control,
ALU, D-Mem, 2 Add units and 3 Mux units, for a total cost of 1000 � 200
� 500 � 100 � 2000 � 2*30 � 3*10 � 3890.

We will compute cost relative to this baseline. Th e performance relative
to this baseline is the speedup we previously computed, and our cost/
performance relative to the baseline is as follows:

New Cost: 3890 � 600 � 4490

Relative Cost: 4490/3890 � 1.15

Cost/Performance: 1.15/0.83 � 1.39. We are paying signifi cantly more for
signifi cantly worse performance; the cost/performance is a lot worse than
with the unmodifi ed processor.

4.4

4.4.1 I-Mem takes longer than the Add unit, so the clock cycle time is equal to
the latency of the I-Mem:

200 ps

4.4.2 Th e critical path for this instruction is through the instruction memory,
Sign-extend and Shift -left -2 to get the off set, Add unit to compute the
new PC, and Mux to select that value instead of PC�4. Note that the path
through the other Add unit is shorter, because the latency of I-Mem is
longer that the latency of the Add unit. We have:

200 ps � 15 ps � 10 ps � 70 ps � 20 ps � 315 ps

4.4.3 Conditional branches have the same long-latency path that computes the
branch address as unconditional branches do. Additionally, they have a long-
latency path that goes through Registers, Mux, and ALU to compute the PCSrc
condition. Th e critical path is the longer of the two, and the path through PCSrc
is longer for these latencies:

200 ps � 90 ps � 20 ps � 90 ps � 20 ps � 420 ps

4.4.4 PC-relative branches.

4.4.5 PC-relative unconditional branch instructions. We saw in part c that this
is not on the critical path of conditional branches, and it is only needed for
PC-relative branches. Note that MIPS does not have actual unconditional
branches (bne zero,zero,Label plays that role so there is no need for
unconditional branch opcodes) so for MIPS the answer to this question is
actually “None”.

4.4.6 Of the two instructions (BNE and ADD), BNE has a longer critical path so
it determines the clock cycle time. Note that every path for ADD is shorter
than or equal to the corresponding path for BNE, so changes in unit latency

 Chapter 4 Solutions S-5

will not aff ect this. As a result, we focus on how the unit’s latency aff ects the
critical path of BNE.
Th is unit is not on the critical path, so the only way for this unit to become
critical is to increase its latency until the path for address computation
through sign extend, shift left , and branch add becomes longer than the
path for PCSrc through registers, Mux, and ALU. Th e latency of Regs, Mux,
and ALU is 200 ps and the latency of Sign-extend, Shift -left -2, and Add is
95 ps, so the latency of Shift -left -2 must be increased by 105 ps or more for
it to aff ect clock cycle time.

4.5

4.5.1 Th e data memory is used by LW and SW instructions, so the answer is:
25% � 10% � 35%

4.5.2 Th e sign-extend circuit is actually computing a result in every cycle, but its
output is ignored for ADD and NOT instructions. Th e input of the sign-
extend circuit is needed for ADDI (to provide the immediate ALU operand),
BEQ (to provide the PC-relative off set), and LW and SW (to provide the
off set used in addressing memory) so the answer is:
20% � 25% � 25% � 10% � 80%

4.6

4.6.1 To test for a stuck-at-0 fault on a wire, we need an instruction that puts that
wire to a value of 1 and has a diff erent result if the value on the wire is stuck
at zero:
If this signal is stuck at zero, an instruction that writes to an odd-numbered
register will end up writing to the even-numbered register. So if we place
a value of zero in R30 and a value of 1 in R31, and then execute ADD
R31,R30,R30 the value of R31 is supposed to be zero. If bit 0 of the Write
Register input to the Registers unit is stuck at zero, the value is written to
R30 instead and R31 will be 1.

4.6.2 Th e test for stuck-at-zero requires an instruction that sets the signal to 1,
and the test for stuck-at-1 requires an instruction that sets the signal to 0.
Because the signal cannot be both 0 and 1 in the same cycle, we cannot test
the same signal simultaneously for stuck-at-0 and stuck-at-1 using only one
instruction. Th e test for stuck-at-1 is analogous to the stuck-at-0 test:

We can place a value of zero in R31 and a value of 1 in R30, then use ADD
R30,R31,R31 which is supposed to place 0 in R30. If this signal is stuck-at-1,
the write goes to R31 instead, so the value in R30 remains 1.

4.6.3 We need to rewrite the program to use only odd-numbered registers.

4.6.4 To test for this fault, we need an instruction whose MemRead is 1, so it has
to be a load. Th e instruction also needs to have RegDst set to 0, which is
the case for loads. Finally, the instruction needs to have a diff erent result if

