CSE2021 Computer Organization

Chapter 1

Computer Abstractions and Technology

Instructor: Prof. Peter Lian
Department of Electrical
Engineering & Computer Science
Lassonde School of Engineering
York University

Acknowledgement

 The slides are adapted from Computer Organization and Design, 5th Edition, by David A. Patterson and John L. Hennessy, 2013, published by MK (Elsevier)

CSE2021 Computer Organization

Instructor: Prof. Peter Lian

email: peterlian@cse.yorku.ca
tel: 416-736-2100 ext 44647

Couse Web:

https://wiki.eecs.yorku.ca/course_archive/2014-15/W/2021/

Schedule:

Lectures: MW 17:30 – 1900, Room CLH A

Labs: Lab-01 M 19:00 – 22:00, LAS 1006

Lab-02 T 19:00 - 22:00, LAS 1006/1004

Office hours: MW 15:00 – 17:00 @ LAS 1012C

CSE2021 Computer Organization

Text book:

5th Edition

Computer Organization and Design -- The Hardware/Software Interface

by David A. Patterson and John L. Hennessy

Morgan Kaufmann Publishers (Elsevier)

ISBN 978-0-12-4077263

Assessment (No Makeup)

- Quizzes: 20% (5:30-5:50pm)
 - Quiz 1 for Chapter 1 on Jan. 21
 - Quiz 2 for Chapter 2 on Feb. 2
 - Quiz 3 for Chapter 3 on Feb. 11
 - Quiz 4 for Appendix on Mar. 4
 - Quiz 5 for Chapter 4 Parts 1 and 2 on Apr. 1
- Lab: 25%
 - 7 lab sessions
 - Starts on Jan. 26/27 (week 4)
- Midterm test: 20% on Feb. 25, 5:30-6:45pm
- Final exam: 35%

CSE2021 Computer Organization

- Topics covered:
 - Computer abstractions and technology
 - Language of the computer: high lever language versus assembly language versus machine language
 - Arithmetic for computers
 - The processor

	Year of introduction	Transistors
4004	1971	2,250
008	1972	2,500
3080	1974	5,000
8086	1978	29,000
286	1982	120,000
386™	1985	275,000
486™ DX	1989	1,180,000
Pentium®	1993	3,100,000
Pentium II	1997	7,500,000
Pentium III	1999	24,000,000
Pentium 4	2000	42,000,000

The 1st Generation Computer

EDSAC, University of Cambridge, UK, 1949

Source: http://www.computerhistory.org

Future Direction GLOBAL CONSUMER ELECTRONICS DEVICE REVENUES 2008-2017 Ultramobile PC 1,000,000 Value US\$M ■ Tablet **■ Wi-Fi Enabled Cellphones** 750,000 Portable Media Player Portable Games Console ■ Notebook 500,000 E-Book Reader ■ Digital Camera 250,000 Set-top Box Network Attached Storage Games Console 2008200920102011201220132014201520162017 Source: http://www.dvd-and-beyond.com/display-article.php?article=1891

The Computer Revolution

- Progress in computer technology
 - Underpinned by Moore's Law
- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones
 - Human genome project
 - World Wide Web
 - Search Engines
- Computers are pervasive

Classes of Computers

- Personal computers
 - General purpose, variety of software
 - Subject to cost/performance tradeoff
- Server computers
 - Network based
 - High capacity, performance, reliability
 - Range from small servers to building sized

Classes of Computers

- Supercomputers
 - High-end scientific and engineering calculations
 - Highest capability but represent a small fraction of the overall computer market
- Embedded computers
 - Hidden as components of systems
 - Stringent power/performance/cost constraints

The PostPC Era

- Personal Mobile Device (PMD)
 - Battery operated
 - Connects to the Internet
 - Hundreds of dollars
 - Smart phones, tablets, electronic glasses
- Cloud computing
 - Warehouse Scale Computers (WSC)
 - Software as a Service (SaaS)
 - Portion of software run on a PMD and a portion run in the Cloud
 - Amazon and Google

What You Will Learn

- How programs are translated into the machine language
 - And how the hardware executes them
- The hardware/software interface
- What determines program performance
 - And how it can be improved
- How hardware designers improve performance

Understanding Performance

- Algorithm
 - Determines number of operations executed
- Programming language, compiler, architecture
 - Determine number of machine instructions executed per operation
- Processor and memory system
 - Determine how fast instructions are executed
- I/O system (including OS)
 - Determines how fast I/O operations are executed

Below Your Program

- Written in high-level language
- System software
 - Compiler: translates HLL code to machine code
 - Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources
- Hardware
 - Processor, memory, I/O controllers

Levels of Program Code

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

Components of a Computer

- Same components for all kinds of computer
 - Desktop, server, embedded
- Input/output includes
 - User-interface devices
 - Display, keyboard, mouse
 - Storage devices
 - Hard disk, CD/DVD, flash
 - Network adapters
 - For communicating with other computers

Touchscreen

- PostPC device
- Supersedes keyboard and mouse
- Resistive and Capacitive types
 - Most tablets, smart phones use capacitive
 - Capacitive allows multiple touches simultaneously

Inside the Processor (CPU)

- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - Small fast SRAM memory for immediate access to data

Inside the Processor

Apple A5

Abstractions

The BIG Picture

- Abstraction helps us deal with complexity
 - Hide lower-level detail
- Instruction set architecture (ISA)
 - The hardware/software interface
- Application binary interface
 - The ISA plus system software interface
- Implementation
 - The details underlying and interface

A Safe Place for Data

- Volatile main memory
 - Loses instructions and data when power off
- Non-volatile secondary memory
 - Magnetic disk
 - Flash memory
 - Optical disk (CDROM, DVD)

Networks

- Communication, resource sharing, nonlocal access
- Local area network (LAN): Ethernet
 - Within a building
- Wide area network (WAN): the Internet
- Wireless network: WiFi, Bluetooth

Technology Trends

- Electronics technology continues to evolve
 - Increased capacity and performance

Integrated circuit (IC)

Very large scale IC (VLSI)

Reduced cost

Technology

Transistor

Vacuum tube

Year

1951

1965

1975

1995

2013

1,000,000				1G	4G
100,000 -		16M	64M 128M 256N		
10.000	1M	41/			
	256K				
100 - 16K	64K				
10	1980 1982 1984 1986			2002 2004 2006 2008 20	

Relative performance/cost				
1				
35				
900				
2,400,000				

DRAM capacity

Ultra large scale IC	250,000,000,000

Semiconductor Technology

- Silicon: semiconductor
- Add materials to transform properties:
 - Conductors
 - Insulators
 - Switch

Manufacturing ICs

Yield: proportion of working dies per wafer

Intel Core i7 Wafer

- 300mm wafer, 280 chips, 32nm technology
- Each chip is 20.7 x 10.5 mm

Integrated Circuit Cost

Cost per die = $\frac{\text{Cost per wafer}}{\text{Dies per wafer} \times \text{Yield}}$

Dies per wafer ≈ Wafer area/Die area

 $Yield = \frac{1}{(1 + (Defects per area \times Die area/2))^2}$

- Nonlinear relation to area and defect rate
 - Wafer cost and area are fixed
 - Defect rate determined by manufacturing process
 - Die area determined by architecture and circuit design

Defining Performance

Which airplane has the best performance?

Response Time and Throughput

- Response time (execution time)
 - How long it takes to do a task
 - Important to computer users
- Throughput (bandwidth)
 - Total amount of work done per unit time
 - Important to server, data center
- Different performance metrics are needed to benchmark different systems.
- Single application is not sufficient to measure the performance of computers

Response Time vs. Throughput

- How are response time and throughput affected by
 - Replacing the processor with a faster version?
 - Adding more processors?
- We will focus on response time by now.

Relative Performance

- Define Performance = 1/(Execution Time)
- "X is n time faster than Y"

Performance_x/Performance_y
= Execution time_y/Execution time_x = n

- Example: time taken to run a program
 - 10s on A, 15s on B
 - Execution Time_B / Execution Time_A= 15s / 10s = 1.5
 - So A is 1.5 times faster than B

Measuring Execution Time

- Elapsed time
 - Total response time, including all aspects
 - Processing, I/O, OS overhead, idle time
 - Determines system performance
- CPU time
 - Time spent processing a given job
 - Discounts I/O time, other jobs' shares
 - Comprises user CPU time and system CPU time
 - Different programs are affected differently by CPU and system performance

Measuring Execution Time

 Unix command "time" can be used to determine the elapsed time and CPU time

```
↑ peterlian — bash — 80×19
Peters-MacBook-Pro:~ peterlian$ help time
time: time [-p] PIPELINE

Execute PIPELINE and print a summary of the real time, user CPU time,
    and system CPU time spent executing PIPELINE when it terminates.
    The return status is the return status of PIPELINE. The `-p' option prints the timing summary in a slightly different format. This uses
    the value of the TIMEFORMAT variable as the output format.
times: times
Print the accumulated user and system times for processes run from
Peters-MacBook-Pro:∼ peterlian$ time ls
                               Dropbox
                 Desktop
?endobi?
                                                       Music
                                                                         stream?
?endobj?12
                  Documents
?endobj?13
                  Downloads
                                    Movies
                                                       Public
         0m0.003s
user
         0m0.001s
         0m0.002s
Peters-MacBook-Pro:~ peterlian$ ☐
```

CPU Clocking

 Operation of digital hardware governed by a constant-rate clock

- Clock period: duration of a clock cycle
 - e.g., $250ps = 0.25ns = 250 \times 10^{-12}s$
- Clock frequency (rate): cycles per second
 - e.g., 4.0GHz = 4000MHz = 4.0×10^9 Hz

CPU Time

CPU Time = CPU Clock Cycles × Clock Cycle Time
= CPU Clock Cycles

Clock Rate

- Performance improved by
 - Reducing number of clock cycles
 - Increasing clock rate
 - Hardware designer must often trade off clock rate against cycle count

CPU Time Example

- Computer A: 2GHz clock, 10s CPU time
- Designing Computer B
 - Aim for 6s CPU time
 - Can do faster clock, but causes 1.2 × clock cycles of A
- How fast must Computer B clock be?

$$\begin{aligned} \text{Clock Rate}_{\text{B}} &= \frac{\text{Clock Cycles}_{\text{B}}}{\text{CPU Time}_{\text{B}}} = \frac{1.2 \times \text{Clock Cycles}_{\text{A}}}{6\text{s}} \\ \text{Clock Cycles}_{\text{A}} &= \text{CPU Time}_{\text{A}} \times \text{Clock Rate}_{\text{A}} \\ &= 10\text{s} \times 2\text{GHz} = 20 \times 10^9 \\ \text{Clock Rate}_{\text{B}} &= \frac{1.2 \times 20 \times 10^9}{6\text{s}} = \frac{24 \times 10^9}{6\text{s}} = 4\text{GHz} \end{aligned}$$

Instruction Performance

Clock Cycles = Instruction Count \times Cycles per Instruction CPU Time = Instruction Count \times CPI \times Clock Cycle Time = $\frac{Instruction Count \times CPI}{Clock Rate}$

- Instruction Count: no. of instruction for a program
 - Determined by program, Instruction Set Architecture (ISA) and compiler
- Average cycles per instruction (CPI)
 - Determined by CPU hardware
 - If different instructions have different CPI
 - Average CPI affected by instruction mix

CPI Example

- Computer A: Cycle Time = 250ps, CPI = 2.0
- Computer B: Cycle Time = 500ps, CPI = 1.2
- Same ISA
- Which is faster, and by how much?

$$\begin{aligned} \text{CPU Time}_{A} &= \text{Instruction Count} \times \text{CPI}_{A} \times \text{Cycle Time}_{A} \\ &= \text{I} \times 2.0 \times 250 \text{ps} = \text{I} \times 500 \text{ps} \longleftarrow \text{A is faster...} \\ \text{CPU Time}_{B} &= \text{Instruction Count} \times \text{CPI}_{B} \times \text{Cycle Time}_{B} \\ &= \text{I} \times 1.2 \times 500 \text{ps} = \text{I} \times 600 \text{ps} \end{aligned}$$

By how much?

CPI in More Detail

 If different instruction classes take different numbers of cycles

Clock Cycles =
$$\sum_{i=1}^{n} (CPI_i \times Instruction Count_i)$$

Weighted average CPI

$$CPI = \frac{Clock\ Cycles}{Instruction\ Count} = \sum_{i=1}^{n} \left(CPI_i \times \frac{Instruction\ Count_i}{Instruction\ Count} \right)$$

Relative frequency

CPI Example

 Alternative compiled program using instructions in classes A, B, C

Class	А	В	С
CPI for class	1	2	3
IC in program 1	2	1	2
IC in program 2	4	1	1

- - Clock Cycles $= 2 \times 1 + 1 \times 2 + 2 \times 3$ = 10
 - Avg. CPI = 10/5 = 2.0
- Program 1: IC = 5
 Program 2: IC = 6
 - Clock Cycles $= 4 \times 1 + 1 \times 2 + 1 \times 3$ = 9
 - Avg. CPI = 9/6 = 1.5

Performance Summary

Instructions Clock cycles Seconds Instruction Clock cycle

- Performance depends on
 - Algorithm: affects IC, possibly CPI
 - Programming language: affects IC, CPI
 - Compiler: affects IC, CPI
 - Instruction set architecture: affects IC, CPI, T_c

Power Trends

In CMOS IC technology

Power = Capacitive load \times Voltage² \times Frequency

Reducing Power

- Suppose a new CPU has
 - 85% of capacitive load of old CPU
 - 15% voltage and 15% frequency reduction

$$\frac{P_{\text{new}}}{P_{\text{old}}} = \frac{C_{\text{old}} \times 0.85 \times (V_{\text{old}} \times 0.85)^2 \times F_{\text{old}} \times 0.85}{C_{\text{old}} \times V_{\text{old}}^2 \times F_{\text{old}}} = 0.85^4 = 0.52$$

- The power wall
 - We can't reduce voltage further
 - We can't remove more heat
- How else can we improve performance?

Multiprocessors

- Multicore microprocessors
 - More than one processor per chip
- Requires explicitly parallel programming
 - Compare with instruction level parallelism
 - Hardware executes multiple instructions at once
 - Hidden from the programmer
 - Hard to do
 - Programming for performance
 - Load balancing
 - Optimizing communication and synchronization

SPEC CPU Benchmark

- Programs used to measure performance
 - Supposedly typical of actual workload
- Standard Performance Evaluation Corp (SPEC)
 - Develops benchmarks for CPU, I/O, Web, ...
- SPEC CPU2006
 - Elapsed time to execute a selection of programs
 - Negligible I/O, so focuses on CPU performance
 - Normalize relative to reference machine
 - Summarize as geometric mean of performance ratios
 - CINT2006 (integer) and CFP2006 (floating-point)

CINT2006 for Intel Core i7 920

Description	Name	Instruction Count x 10 ⁹	CPI	Clock cycle time (seconds x 10 ⁻⁹)	Execution Time (seconds)	Reference Time (seconds)	SPECratio
Interpreted string processing	perl	2252	0.60	0.376	508	9770	19.2
Block-sorting compression	bzip2	2390	0.70	0.376	629	9650	15.4
GNU C compiler	gcc	794	1.20	0.376	358	8050	22.5
Combinatorial optimization	mcf	221	2.66	0.376	221	9120	41.2
Go game (AI)	go	1274	1.10	0.376	527	10490	19.9
Search gene sequence	hmmer	2616	0.60	0.376	590	9330	15.8
Chess game (AI)	sjeng	1948	0.80	0.376	586	12100	20.7
Quantum computer simulation	libquantum	659	0.44	0.376	109	20720	190.0
Video compression	h264avc	3793	0.50	0.376	713	22130	31.0
Discrete event simulation library	omnetpp	367	2.10	0.376	290	6250	21.5
Games/path finding	astar	1250	1.00	0.376	470	7020	14.9
XML parsing	xalancbmk	1045	0.70	0.376	275	6900	25.1
Geometric mean	-	_	-		-	-	25.7

SPEC Power Benchmark

 Power consumption of server at different workload levels

Performance: ssj_ops/secPower: Watts (Joules/sec)

Overall ssj_ops per Watt = $\left(\sum_{i=0}^{10} ssj_ops_i\right) / \left(\sum_{i=0}^{10} power_i\right)$

SPECpower_ssj2008 for Xeon X5650

Target Load %	Performance (ssj_ops)	Average Power (Watts)
100%	865,618	258
90%	786,688	242
80%	698,051	224
70%	607,826	204
60%	521,391	185
50%	436,757	170
40%	345,919	157
30%	262,071	146
20%	176,061	135
10%	86,784	121
0%	0	80
Overall Sum	4,787,166	1,922
Σ ssj_ops/ Σ power =		2,490

Pitfall: Amdahl's Law

 Improving an aspect of a computer and expecting a proportional improvement in overall performance

$$T_{improved} = \frac{T_{affected}}{improvement \ factor} + T_{unaffected}$$

- Example: multiply accounts for 80s/100s
 - How much improvement in multiply performance to get 5 × overall?

$$20 = \frac{80}{n} + 20$$
 Can't be done!

Corollary: make the common case fast

Fallacy: Low Power at Idle

- Look back at X5650 power benchmark
 - At 100% load: 258W
 - At 50% load: 170W (66%)
 - At 10% load: 121W (47%)
- Google data center
 - Mostly operates at 10% 50% load
 - At 100% load less than 1% of the time
- Consider designing processors to make power proportional to load

Pitfall: MIPS as a Performance Metric

- MIPS: Millions of Instructions Per Second
 - Doesn't account for
 - Differences in ISAs between computers
 - Differences in complexity between instructions

$$\begin{aligned} \text{MIPS} &= \frac{\text{Instruction count}}{\text{Execution time} \times 10^6} \\ &= \frac{\text{Instruction count}}{\frac{\text{Instruction count} \times \text{CPI}}{\text{Clock rate}}} \times 10^6} = \frac{\text{Clock rate}}{\text{CPI} \times 10^6} \end{aligned}$$

CPI varies between programs on a given CPU

Concluding Remarks

- Cost/performance is improving
 - Due to underlying technology development
- Hierarchical layers of abstraction
 - In both hardware and software
- Instruction set architecture
 - The hardware/software interface
- Execution time: the best performance measure
- Power is a limiting factor
 - Use parallelism to improve performance