EECS 2021 Computer Organization

| Chapter 4 Part 3

| The Processor - Pipelining

| Pipeline Summary

‘ Pipelining improves performance by
increasing instruction throughput
Executes multiple instructions in parallel
Each instruction has the same latency
Subject to hazards
Structure, data, control

Instruction set design affects complexity of
pipeline implementation

MIPS Pipelined Datapath

IF: Instruction fetch 1 10: nstruction decoder | EX: Execute/ | MEM: Memory access | WB: Writo back

.

Right-to-left
flow leads to
hazards

Pipeline registers

Need registers between stages
To hold information produced in previous cycle

| Pipeline Operation

| Cycle-by-cycle flow of instructions through
the pipelined datapath
“Single-clock-cycle” pipeline diagram
Shows pipeline usage in a single cycle
Highlight resources used
c.f. “multi-clock-cycle” diagram
Graph of operation over time
We'll look at “single-clock-cycle” diagrams
for load & store

| Single-Clock-Cycle Diagram

‘ IF for Load and Store

ID for Load, Store, ...

W

I Instruction decode L

Inswucton

EX for Load

NEMWE

ez

MEM for Load

WB for Load

{
7\
| DY W

Wrong
register
number

Corrected Datapath for Load

J
|§
g
%ii;;
| ;
I3

= =

~ 14
§2az a7
f;_iz

G [u

1

[

i
l
5HH
i
L
P
—
r—'l
B3 éig
&

EX for Store

Address P Pead
_. E rogstor 1 w1 |
instruction '-H:'-l“mz
memory I S L e
|
regat
| wirte
data

MEM for Store

I

mory

™
rogeter 1

e

Inuruction oz
memory

L -

e data 2|

WB for Store

}L
wi

rite-back

10 01X omen Mowwo
A
A
4 — e l‘!(n‘
2
°
M §
v e E o
— fnadt
x rogter 1
. s
u Read Zere’
—
Instroction g2 AW
—
memory — g T Rt | oy
v -~ cah 2
presen
Wite
ot
" 2
. —

Multi-Cycle Pipeline Diagram

Form showing resource usage

Time (in clock cycles)
CcC1 cc2 cC3 CcCa CcCs cCs cc7 cCs cCo

Program
execution
order
(in instructions)
-

Iw $10, 20($1)

h
.)
sub$11,$2, $3 L'l‘I‘“.‘_':

add $12, 53, 54 (i

Iw $13, 24(81)

add $14, $5, 56 L =i oM ’

Multi-Cycle Pipeline Diagram

Traditional form

Time (in clock cycles)

cc1 cc2 cc3 cc4 ccs cCcé cc7 ccs cco
Program
execution
order

(in instructions)

Instruction | Instruction Data

Iw $10, 20(S1) fetch dacode Execution access Write back

sub $11,82,§3 Instruction | Instructon | Execution| 0% | wrte back

add $12, $3, $4 1"5""‘:;“’" "‘;‘m" Execution ag:::s Write back

Iw $13, 24($1) insiructon | Instructon | execution | 22 | wiite back

add $14, 55, 56 Insirucion | Insuchon | execution | 04 | wrte back

Single-Cycle Pipeline Diagram

State of pipeline in a given cycle

| add $14, §5, 56 | w $13, 24 (81) | add $12, 83, 84 | sub $11, 82,83 | v $10. 20(s1)
| Instruction fatch | Instruction decode | Execution | Memory | write-back

FAD EXMEM MEMWEB

Aot
g S
H fead
b s
— B g B2
oy
s
wree
o

1EAD MEMWE

P11

Instructon

(15-0) 16 2 &
Sign- |4 ALY
ontre! NomHoad
Instruction
(20-16)
0] Awuce
[]
u
x

Pipelined Control

Control signals derived from instruction
= As in single-cycle implementation

L

=
@

[=]
Tl

3]
[

IF/ID ID/EX EXMEM MEMWB

0EX
// N I | eowem
\ 1
\r"’w (L' L e mEMVE
/L | r
Lo ex " |we
- —] ‘
R
Acd I |
—
v
|
|
Inswruction
memory

10

| Data Hazards in ALU Instructions

‘ Consider this sequence:
sub $2, $1,$3
and $12,%2,9%5
or $13,9%6,
add $14,%2,
sw $15,100(%2)

We can resolve hazards with forwarding
How do we detect when to forward?

| Dependencies & Forwarding

Time (in clock cycles)
Value of cc1 cc2 ccs3 cCc4 cCs CC6 cc7 ccs cco

register $2: 10 10 10 10 1020 20 20 20 -20
Program Assume that $2: initial value=10, value after sub=-20
execution
order
(in instructions)

sub$2, $1,$3 @—HJ‘@:”:D

and $12, $2, $5 —&g

or $13, 6, $2 \T_[% —Eq'

add $14, 52,82 agg |\ g:

sw $15, 100(52) Wﬂ— -:.:n ’ | Il' g

11

Detecting the Need to Forward

Pass register numbers along pipeline
e.g., ID/EX.RegisterRs = register number for Rs
sitting in ID/EX pipeline register
ALU operand register numbers in EX stage
are given by
ID/EX.RegisterRs, ID/EX.RegisterRt
Data hazards when

EX/MEM.RegisterRd = ID/EX.RegisterRs Fwd from
EX/MEM.RegisterRd = ID/EX.RegisterRt EXIMEM

Fwd from
MEM/WB
pipeline re

MEM/WB.RegisterRd = ID/EX.RegisterRt

. . pipeline re
MEM/WB.RegisterRd = ID/EX.RegisterRs }

*Recall for R-type: add rd, rs, rt, i.e. ALU uses values of
rs and rt registers for calculation.

Detecting the Need to Forward

But only if forwarding instruction will write
to a register!
EX/MEM.RegWrite, MEM/WB.RegWrite

And only if Rd for that instruction is not
$zero

EX/MEM.RegisterRd # 0,
MEM/WB.RegisterRd # 0

12

| Forwarding Paths

‘ ID/EX EX/MEM MEM/WB

—

Registers

}
s(xc=)

orwardA ——
= ALU = ——

T

EX/MEM.RegisterRd

unit MEM/WB RegisterRd

(.
(xem)

ForwardB

L
(x==)

b. With forwarding

| Forwarding Conditions

‘ EX hazard
if (EXIMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

MEM hazard

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

13

| Datapath with Forwarding

ID/EX
/* I EX/MEM
Control M we MEMWB
IFAD L. Ex ‘—’ M L'El—

xc=)

[Instruction

—
—
2 ¥
Registers : ALU — T —
——
Instruction -
memory N Data
>
memory

xc=

Tt

IF/ID.RegisterRt Rt

isterRt | Rt M Fodistort
TF/ID. RogisterAt At ﬂ ' EXMEM RegisterRd
IF/ID.RegisterRd Rd

- — I

—1
IF/ID.RegisterRs Rs -

|
W_ MEM/WB.RegisterRd _‘

unit

Load-Use Data Hazard

Time (in clock cycles)
cc1 ccz2 CcC3 cC4 CCs CCé cc7 ccs cc¢

Program
execution
order
(in instructions)
Iw $2, 20($1) Need to stall
for one cycle
and $4, $2, $5
or $8, $2, $6 ‘ :g [’E
add $9, 54, 52 L -domb{ }—Egi
slt $1, $6, 7 . = oM I

14

| Load-Use Hazard Detection

| Check when using instruction is decoded
in ID stage

ALU operand register numbers in ID stage
are given by

IF/ID.RegisterRs, IF/ID.RegisterRt
Load-use hazard when

ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

If detected, stall and insert bubble

| How to Stall the Pipeline

| Force control values in ID/EX register
to0

EX, MEM and WB do nop (no-operation)

Prevent update of PC and IF/ID register
Using instruction is decoded again
Following instruction is fetched again

1-cycle stall allows MEM to read data for Tw
Can subsequently forward to EX stage

15

Stall/Bubble in the Pipeline

Program
execution
order

(in instructions)

Iw $2, 20($1)

add $9, $4, 82

and becomes nop

Time (in clock cycles)
cc1

and $4, $2, $5 stalled in ID

or $8, $2, $6 stalled in IF

cc2 cc3 cC4

OR IF
repeated

CCs cCe cc7 ccs cC9 cCC10

Stall inserted
here

Datapath with Hazard Detection

IF/DWrite

PCWrite
al

pC Instruction | |
memory

ID/EX.MemRead

[Instruction

ID/EX
/\ . I EXl/'MTEM
u M MEM/WB
U 0 lex| L. M w8
M
u
x
mglmr' e aal - —
w ous || |-
x aenary
IFD.R lerRs. L
IF/ID. RegisterRt
\FD.Registerfit e, (M
\FD.Regsterid 1 e, |
ID/EX Registerfit e | U — —-I
As Forwardi
—(:

16

| Stalls and Performance

Stalls reduce performance
But are required to get correct results

Compiler can arrange code to avoid
hazards and stalls

Requires knowledge of the pipeline structure

| Branch Hazards

If branch outcome determined in MEM

Time (in clock cycles)

cC1 cc2 cc3 cc4 CcCs ccs cc7 ccs ccs

Program

| Branch to PC+4+7+4=T2 |
order /
(in instructions)
omns ! s s

44 and $12, 52, 55 Ern-lxai: :>~

Flush these
480r$13,$6, 52 :ﬂ— .—"ng'_' instructions
(Set control
52 add $14, 52, 52 iHE values to 0)

—

72 hw $4, 50(S7)

17

Solution to Control Hazard

Example: branch taken

36: sub $10, $4, $8
40: beq $1, $3, 7

44: and $12, $2, $5
48: or $13, $2, %6
52: add $14, $4, $2
56: slt $15, $6, $7

72: 1w $4, 50($7)
Assume additional hardware to determine
outcome of branch in ID stage
« Target address adder: PC+4+4*7=72
« Register comparator: e.g. if $1=$3

Example: Branch Taken

and $12, 2, 85 : beq$1,83,7 : sub $10, $4, §8 before<t> i before<2>

IF.Flush

Data
memory

18

Example: Branch Taken

_ w$4,50(87) ; Bubble (nop) ' beq$1,$3,7 ' sub$10,... . before<t>

Hazard
cetection £
unit

IDEX

Clock 4 | " —_—

Exceptions and Interrupts

“‘Unexpected” events requiring change
in flow of control

« Different ISAs use the terms differently
Exception
= Arises within the CPU

e.g., undefined opcode, overflow, syscall, ...
Interrupt
= From an external 1/O controller

Dealing with them without sacrificing
performance is hard

19

| Handling Exceptions

| In MIPS, exceptions managed by a System
Control Coprocessor (CP0)
Save PC of offending (or interrupted) instruction
In MIPS: Exception Program Counter (EPC)
Save indication of the problem

In MIPS: Cause register

We’ll assume 1-bit
0 for undefined opcode, 1 for overflow

Jump to handler at 8000 00180

| An Alternate Mechanism

| Vectored Interrupts
Handler address determined by the cause

Example:
Undefined opcode: CO000 0000

Overflow: C000 0020

C000 0040
Instructions either

Deal with the interrupt, or

Jump to real handler

20

| Handler Actions

| Read cause, and transfer to relevant
handler
Determine action required
If restartable
Take corrective action
use EPC to return to program
Otherwise
Terminate program
Report error using EPC, cause, ...

| Exceptions in a Pipeline

| Another form of control hazard

Consider overflow on add in EX stage
add $1, $2, %1
Prevent $1 from being clobbered
Complete previous instructions
Flush add and subsequent instructions
Set Cause and EPC register values
Transfer control to handler

Similar to mispredicted branch
Use much of the same hardware

21

| Pipeline with Exceptions

‘ s
= detection
o J

N |
memor " Date
L e —= v / mamory [
2
) Jv I
V-“.Y S—
o/ —
minlall
A
— T H
L J U S
||| IS = i
mal
\ S

| Exception Properties

‘ Restartable exceptions
Pipeline can flush the instruction
Handler executes, then returns to the
instruction
Refetched and executed from scratch
PC saved in EPC register
Identifies causing instruction

Actually PC + 4 is saved
Handler must adjust

22

