
8 January 2015

Chapter 2 — Instructions: Language of the Computer 1

CChhaapptteerr 22

CSE2021 Computer Organization

Chapter 2 — Instructions: Language of the Computer — 1

Instructions: Language of the
Computer

Chapter 2 — Instructions: Language of the Computer — 1

Instruction Set
n  The repertoire of instructions of a

computer
n  Different computers have different

instruction sets
n  But with many aspects in common

n  Early computers had very simple
instruction sets
n  Simplified implementation

n  Many modern computers also have simple
instruction sets

8 January 2015

Chapter 2 — Instructions: Language of the Computer 2

Chapter 2 — Instructions: Language of the Computer — 1

The MIPS Instruction Set
n  Used as the example throughout the book
n  Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)
n  Large share of embedded core market

n  Applications in consumer electronics, network/storage
equipment, cameras, printers, …

n  Typical of many modern ISAs
n  See MIPS Reference Data tear-out card, and

Appendixes B and E(on CD)

MIPS Core Instructions

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 3

Number Systems

CSE2021 Computer Organization

Four Important Number Systems

System	 Why?	 Remarks	
Decimal Base 10 (10 fingers) Most used

system
Binary Base 2. On/Off

systems

3 times more
digits than
decimal

Octal Base 8.Shorthand
notation for working
with binary

3 times less
digits than binary

Hex Base 16 4 times less
digits than binary

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 4

Positional Number Systems
n  Have a radix r (base) associated with them.
n  In the decimal system, r = 10:

n  Ten symbols: 0, 1, 2, ..., 8, and 9
n  More than 9 move to next position, so each

position is power of 10
n  Nothing special about base 10 (used

because we have 10 fingers)
n  What does 642.39110 mean?

6 x 102 + 4 x 101 + 2 x 100 . 3 x 10-1 + 9 x 10-2 + 1 x 10-3

Radix point Increasingly +ve
powers of radix

Increasingly -ve
powers of radix

Chapter 2 — Instructions: Language of the Computer — 1

Positional Number Systems

Base 10
(r)

 102

(100)
101

(10)
100

(1)
10-1

(0.1)
10-2

(0.01)
10-3

(0.001)
Coefficient

(aj)
6 4 2 3 9 1

Product: aj*ri 600 40 2 0.3 0.09 0.001
Value = 600 + 40 + 2 + 0.3 + 0.09 + 0.001 = 642.391

n  What does 642.39110 mean?
Radix point

n Multiply each digit by appropriate power of 10
and add them together

n  In general: i
n

mi
j ra ×∑

−=

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 5

Positional Number Systems

Number
system

Radix Symbols

Binary 2 {0,1}

Octal 8 {0,1,2,3,4,5,6,7}

Decimal 10 {0,1,2,3,4,5,6,7,8,9}

Hexadecimal 16 {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f}

Chapter 2 — Instructions: Language of the Computer — 1

Binary Number System
Decimal Binary Decimal Binary
0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 6

Octal Number System
Decimal Octal Decimal Octal
0 0 8 10
1 1 9 11
2 2 10 12
3 3 11 13
4 4 12 14
5 5 13 15
6 6 14 16
7 7 15 17

Chapter 2 — Instructions: Language of the Computer — 1

Hexadecimal Number System
Decimal Hex Decimal Hex

0 0 8 8
1 1 9 9
2 2 10 A
3 3 11 B
4 4 12 C
5 5 13 D
6 6 14 E
7 7 15 F

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 7

Four Number Systems
Decimal Binary Octal Hex Decimal Binary Octal Hex

0 0000 0 0 8 1000 10 8
1 0001 1 1 9 1001 11 9
2 0010 2 2 10 1010 12 A
3 0011 3 3 11 1011 13 B
4 0100 4 4 12 1100 14 C
5 0101 5 5 13 1101 15 D
6 0110 6 6 14 1110 16 E
7 0111 7 7 15 1111 17 F

Chapter 2 — Instructions: Language of the Computer — 1

CCoonnvveerrssiioonn bbeettwweeeenn
nnuummbbeerr ssyysstteemmss

CSE2021 Computer Organization

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 8

Conversion: Binary to Decimal

1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 . 0 x 2-1 + 1 x 2-2 + 1 x 2-3 = 13.37510

Binary point

Binary Decimal

1101.0112 (??)10

r 23(8) 22(4) 21(2) 20(1) 2-1(0.5
)

2-2(0.25) 2-3(0.125
)

aj 1 1 0 1 0 1 1

aj*r

8 4 0 1 0 0.25 0.125

(1101.011)2= 8 + 4 + 1 + 0.25 + 0.125 = 13.375

Chapter 2 — Instructions: Language of the Computer — 1

Conversion: Decimal to Binary

15510 = 100110112

n  A decimal number can be converted to binary by
repeated division by 2 if it is an integer

Arrange
remainders
in reverse
order

number ÷÷2 Remainder

155 77 1 Least Significant
Bit (LSB)

77 38 1
38 19 0
19 9 1
9 4 1
4 2 0
2 1 0
1 0 1 Most Significant

Bit (MSB)

8 January 2015

Chapter 2 — Instructions: Language of the Computer 9

Conversion: Decimal to Binary

Decimal Binary
(27.375)10 (??)2

number ÷÷2 Remainder

27 13 1
13 6 1
6 3 0
3 1 1
1 0 1

Arrange remainders in reverse order: 11011

27.37510=11011.0112 ⇒

Arrange in order: 011

number X2 Integer

0.375 0.75 0
0.75 1.50 1
0.50 1.0 1

  If the number includes a radix point, it is necessary to
separate the number into an integer part and a fraction
part, each part must be converted differently.

Chapter 2 — Instructions: Language of the Computer — 1

Conversion: Octal to Binary
Octal Binary

345.56028 (??)2

345.56028=11100101.1011100000102

010000110101101100011

2065 . 543

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 10

Conversion: Binary to Octal
Binary Octal

11001110.01011012 (??)8

11001 110 . 010 110 100

Group by 3’s
Add trailing zeros if necessary

Group by 3’s
 Add leading zeros if necessary

11001110.01011012 = 316.2648

 Note trailing zeros

3 1 6 462

Chapter 2 — Instructions: Language of the Computer — 1

Conversion: Binary to Hex
Binary Hex

11100101101.11110101112 (??)16

 = 72D.F5C16

110001011111.11010010 111

Group by 4’s
Add trailing zeros if
necessary

Group by 4’s
Add leading zeros if

necessary

 Note trailing zeros

7 2 D C5F

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 11

Conversion: Hex to Binary
Hex Binary

B9A4.E6C16 (??)2

 1011100110100100.1110011011002

CEAB
110001101110.0100101010011011

649

Chapter 2 — Instructions: Language of the Computer — 1

Conversion: Hex to Decimal
Hex Decimal

B63.4C16 (??)10

10
21012 296875.29151612164.1631661611 =×+××+×+× −−

162 161 160 16-1 16-2

B (=11) 6 3 4 C (=12)
= 2816 + 96 + 3 + 0.25 + 0.046875 = 2915.296875

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 12

Activity 1
n  Convert the hexadecimal number A59.FCE

to binary
n  Convert the decimal number 166.34 into

binary

Chapter 2 — Instructions: Language of the Computer — 1

Binary Numbers

n  Number of permutations double with every extra
bit

n  2n unique numbers can be represented by n bits

No. of
bits

Distinct nos.

1 2 {0,1}

2 4 {00, 01, 10, 11}

3 8 {000, 001, 010, 011, 100, 101, 110, 111}

n 2n

n  How many distinct numbers can be represented by n bits?

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 13

Number System and Computers

n  Some tips
n  Binary numbers often grouped in fours for

easy reading
n  1 byte=8-bit, 1 word = 4-byte
n  In computer programs (e.g. Verilog, C) by

default decimal is assumed
n  To represent other number bases use

System Representation Example for 20
Hexadecimal 0x... 0x14
Binary 0b... 0b10100
Octal 0o… (zero and

‘O’)
0o24

Chapter 2 — Instructions: Language of the Computer — 1

Number System and Computers

n  Addresses often written in Hex
n  Most compact representation
n  Easy to understand given their hardware

structure
n  For a range 0x000 – 0xFFF, we can

immediately see that 12 bits are needed, 4K
locations

n  Tip: 10 bits = 1K

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 14

SSiiggnneedd BBiinnaarryy

CSE2021 Computer Organization

Chapter 2 — Instructions:
Language of the Computer — 1

Negative numbers representation

n  Three kinds of representations are common:
1.  Signed Magnitude (SM)
2.  One’s Complement
3.  Two’s Complement

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 15

Signed Magnitude Representation

[0,1] {…………}

8 bit representation for +13 is 0 0001101

8 bit representation for -13 is 1 0001101

Sign bit
(left most)

(n -1)
magnitude bits

n  0 indicates +ve
n  1 indicates -ve

Chapter 2 — Instructions: Language of the Computer — 1

1’’s Complement Notation

n  The idea is to leave positive numbers as is, but to
represent negative numbers by the 1’s Complement of
their magnitude.

n  Example: Let n = 4. What is the 1’s Complement
representation for +6 and -6?
n  +6 is represented as 0110 (as usual in binary)
n  -6 is represented by 1’s complement of its magnitude (6)

Let N be an n-bit number and Ñ(1) be the 1’s
Complement of the number. Then,

Ñ(1) = 2n - 1 - N

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 16

1’’s Complement Notation

n  1’s C representation can be computed in 2 ways:
n  Method 1: 1’s C representation of -6 is:
 24 - 1 - |N| = (16 – 1 – 6)10 = (9)10 = (1001)2

n  Method 2: For -6, the magnitude = 6 =
(0110)2

n  The 1’s C representation is obtained by
complementing the bits of the magnitude:
(1001)2

n  24 - 1 - |N| = (16)10 – 1 – |N| = (15)10 – |N|
 = (1111)2 – |N|

Chapter 2 — Instructions: Language of the Computer — 1

2’’s Complement Notation

n  Again, the idea is to leave positive numbers as is, but to
represent negative numbers by the 2’s C of their
magnitude.

n  Example: Let n = 5. What is the 2’s C representation for
+11 and -13?
n  +11 is represented as 01011 (as usual in binary)
n  -13 is represented by 2’s complement of its magnitude (13)

Let N be an n bit number and Ñ(2) be the 2’s
Complement of the number. Then,

Ñ(2) = 2n - N

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 17

2’’s Complement Notation

n  2’s C representation can be computed in 2 ways:
n  Method 1: 2’s C representation of -13 is 25

- |N| = (32 – 13)10 = (19)10 = (10011)2

n  Method 2: For -13, the magnitude = 13 =
(01101)2

n  The 2’s C representation is obtained by adding
1 to the 1’s C of the magnitude

n  25 - |N| = (25 – 1 – |N|) + 1 = 1’s C + 1

100111001001101 1 '1 ⎯⎯→⎯⎯⎯→⎯ addCs

Chapter 2 — Instructions: Language of the Computer — 1

Comparing all Signed Notations

n  In all 3 representations, a
–ve number has a 1 in
MSB location

n  To handle –ve numbers
using n bits,
n  2n-1 symbols can be used

for positive numbers
n  2n-1 symbols can be used

for negative umbers

n  In 2’s C notation, only 1
combination used for 0

4-bit
No.

SM 1’’s C 2’’s C

0000 +0 +0 0
0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 -0 -7 -8

1001 -1 -6 -7

1010 -2 -5 -6

1011 -3 -4 -5

1100 -4 -3 -4

1101 -5 -2 -3

1110 -6 -1 -2

1111 -7 -0 -1

≅

≅

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 18

IInnssttrruuccttiioonnss

CSE2021 Computer Organization

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer — 1

Arithmetic Operations
n  Add and subtract, three operands

n  Two sources and one destination
 add a, b, c # a gets b + c

n  All arithmetic operations have this form
n  Design Principle 1: Simplicity favours

regularity
n  Regularity makes implementation simpler
n  Simplicity enables higher performance at

lower cost

8 January 2015

Chapter 2 — Instructions: Language of the Computer 19

Chapter 2 — Instructions: Language of the Computer — 37

Arithmetic Example
n  C code:
 f = (g + h) - (i + j);

n  Compiled MIPS code:
 add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 1

Register Operands (1)
n  Arithmetic instructions use register operands
n  MIPS has a 32 × 32-bit register file(32-bit data

called a “word”), numbered from 0 to 31
n  Use for frequently accessed data

8 January 2015

Chapter 2 — Instructions: Language of the Computer 20

Chapter 2 — Instructions: Language of the Computer — 1

Register Operand (2)
n  Design Principle 2: Smaller is faster
n  Example:

n  C code: f = (g + h) - (i + j);
n  MIPS code

 add $t0, $s1, $s2
add $t1, $s3, $s4
sub $t2, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 1

Memory Operands (1)
n  Main memory used for

composite data
n  Arrays, structures, dynamic data

n  Memory is byte addressed
n  Each address identifies an 8-bit

byte
n  Words are aligned in memory

n  Address must be a multiple of 4
n  Length of an address is 32-bit

n  Min value of address = 0
n  Max value of address = (232-1)

n  MIPS is Big Endian
n  Most-significant byte at least

address of a word

Address DATA 32-b
4*N 10101010
... …
… …
8 10101010
4 01001110
0 110…0100

8 January 2015

Chapter 2 — Instructions: Language of the Computer 21

Chapter 2 — Instructions: Language of the Computer — 1

Memory Operands (2)
n  Data is transferred between memory and register

using data transfer instructions: lw and sw

n  $s1 is receiving register
n  $s2 is base address of memory, 100 is called the offset,

so ($s2+100) is the address of memory location

Chapter 2 — Instructions: Language of the Computer — 1

Memory Operand Example 1
n  C code:
 g = h + A[8];

n  g in $s1, h in $s2, base address of A in $s3
n  Compiled MIPS code:

n  Index 8 requires offset of 32
n  4 bytes per word

 lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

8 January 2015

Chapter 2 — Instructions: Language of the Computer 22

Chapter 2 — Instructions: Language of the Computer — 1

Memory Operand Example 2
n  C code:
 A[12] = h + A[8];

n  h in $s2, base address of A in $s3
n  Compiled MIPS code:

n  Index 8 requires offset of 32
 lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 1

Registers vs. Memory
n  Registers are faster to access than

memory
n  Operating on memory data requires loads

and stores
n  More instructions to be executed

n  Compiler must use registers for variables
as much as possible
n  Only spill to memory for less frequently used

variables
n  Register optimization is important!

8 January 2015

Chapter 2 — Instructions: Language of the Computer 23

Chapter 2 — Instructions: Language of the Computer — 1

Immediate Operands
n  Constant data specified in an instruction
 addi $s3, $s3, 4

n  No subtract immediate instruction
n  Just use a negative constant
 addi $s2, $s1, -1

n  Design Principle 3: Make the common
case fast
n  Small constants are common
n  Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 1

The Constant Zero
n  MIPS register 0 ($zero) is the constant 0

n  Cannot be overwritten
n  Useful for common operations

n  E.g., move between registers
 add $t2, $s1, $zero

8 January 2015

Chapter 2 — Instructions: Language of the Computer 24

Chapter 2 — Instructions: Language of the Computer — 1

Sign Extension
n  Representing a number using more bits

n  Preserve the numeric value
n  In MIPS instruction set

n  addi: extend immediate value
n  lb, lh: extend loaded byte/halfword
n  beq, bne: extend the displacement

n  Replicate the sign bit to the left
n  c.f. unsigned values: extend with 0s

n  Examples: 8-bit to 16-bit
n  +2: 0000 0010 => 0000 0000 0000 0010
n  –2: 1111 1110 => 1111 1111 1111 1110

PPrreesseennttiinngg MMIIPPSS
IInnssttrruuccttiioonnss iinn
BBiinnaarryy

CSE2021 Computer Organization

Chapter 2 — Instructions: Language of the Computer — 1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 25

Chapter 2 — Instructions: Language of the Computer — 1

Representing Instructions
n  Instructions are encoded in binary

n  Called machine code

n  MIPS instructions
n  Encoded as 32-bit instruction words
n  Small number of formats encoding operation code

(opcode), register numbers, …
n  Regularity!

n  Register numbers
n  $t0 – $t7 are reg’s 8 – 15
n  $t8 – $t9 are reg’s 24 – 25
n  $s0 – $s7 are reg’s 16 – 23

Chapter 2 — Instructions: Language of the Computer — 1

MIPS R-format Instructions

n  Instruction fields
n  op: operation code (opcode)
n  rs: first source register number
n  rt: second source register number
n  rd: destination register number
n  shamt: shift amount (00000 for now)
n  funct: function code (extends opcode)

op rs rt rd shamt funct
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

8 January 2015

Chapter 2 — Instructions: Language of the Computer 26

Chapter 2 — Instructions: Language of the Computer — 1

R-format Example

 add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 1

MIPS I-format Instructions

n  Immediate arithmetic and load/store instructions
n  rt: destination or source register number
n  Constant: –215 to +215 – 1
n  Address: offset added to base address in rs

n  Example: Load array A[8] to register $t0, base
address of A in $s3

 lw $t0, 32($s3)

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

op rs rt Constant or address

35 19 8 32

100011 10011 01000 0000,0000,0010,0000

8 January 2015

Chapter 2 — Instructions: Language of the Computer 27

Chapter 2 — Instructions: Language of the Computer — 1

MIPS I-format Instructions
n  Design Principle 4: Good design demands good

compromises
n  Different formats complicate decoding, but allow 32-bit

instructions uniformly
n  Keep formats as similar as possible

Chapter 2 — Instructions: Language of the Computer — 1

Stored Program Computers
n  Instructions represented in

binary, just like data
n  Instructions and data stored

in memory
n  Programs can operate on

programs
n  e.g., compilers, linkers, …

n  Binary compatibility allows
compiled programs to work
on different computers
n  Standardized ISAs

TThhee BBIIGG PPiiccttuurree

8 January 2015

Chapter 2 — Instructions: Language of the Computer 28

Chapter 2 — Instructions: Language of the Computer — 1

Logical Operations
n  Instructions for bitwise manipulation

Operation C Java MIPS
Shift left << << sll

Shift right >> >>> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

n  Useful for extracting and inserting
groups of bits in a word

Chapter 2 — Instructions: Language of the Computer — 1

Shift Operations

n  shamt: how many positions to shift
n  Shift left logical

n  Shift left and fill with 0 bits
n  sll by i bits multiplies by 2i

n  Shift right logical
n  Shift right and fill with 0 bits
n  srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct
6 bits 6 bits 5 bits 5 bits 5 bits 5 bits

8 January 2015

Chapter 2 — Instructions: Language of the Computer 29

Chapter 2 — Instructions: Language of the Computer — 1

AND Operations
n  Useful to mask bits in a word

n  Select some bits, clear others to 0

 and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000 $t0

Chapter 2 — Instructions: Language of the Computer — 1

OR Operations
n  Useful to include bits in a word

n  Set some bits to 1, leave others unchanged

 or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000 $t0

8 January 2015

Chapter 2 — Instructions: Language of the Computer 30

Chapter 2 — Instructions: Language of the Computer — 1

NOT Operations
n  Useful to invert bits in a word

n  Change 0 to 1, and 1 to 0
n  MIPS has NOR 3-operand instruction

n  a NOR 0 == NOT (a OR 0) = NOT a
n  Example:
a=0000 0000 0000 0000 0000 0000 1100 1010
a is placed in $t1

 nor $t0, $t1, $zero
0000 0000 0000 0000 0000 0000 1100 1010 $t1

1111 1111 1111 1111 1111 1111 0011 0101 $t0

Register 0: always
read as zero

Chapter 2 — Instructions: Language of the Computer — 1

Conditional Operations
n  Branch to a labeled instruction if a

condition is true
n  Otherwise, continue sequentially

n  beq rs, rt, L1
n  if (rs == rt) branch to instruction labeled L1;

n  bne rs, rt, L1
n  if (rs != rt) branch to instruction labeled L1;

n  j L1
n  unconditional jump to instruction labeled L1

8 January 2015

Chapter 2 — Instructions: Language of the Computer 31

Chapter 2 — Instructions: Language of the Computer — 1

Example: If Statements
n  C code:
 if (i==j) f = g+h;
else f = g-h;

n  f, g,h,i,j in $s0 ~ $s4
n  Compiled MIPS code:
 bne $s3, $s4, Else
 add $s0, $s1, $s2
 j Exit
Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 1

Example: Loop Statements
n  C code:
 while (save[i] == k) i += 1;

n  i in $s3, k in $s5, address of save in $s6
n  Compiled MIPS code:
Loop: sll $t1,$s3,2 # iX4 get offset

 add $t1,$t1,$s6 #get address
 lw $t0, 0($t1) #$t0=save[i]
 bne $t0, $s5, Exit
 addi $s3, $s3, 1
 j Loop
Exit: …

8 January 2015

Chapter 2 — Instructions: Language of the Computer 32

Chapter 2 — Instructions: Language of the Computer — 63

More Conditional Operations
n  Set result to 1 if a condition is true

n  Otherwise, set to 0
n  slt rd, rs, rt

n  if (rs < rt) rd = 1; else rd = 0;
n  slti rt, rs, constant

n  if (rs < constant) rt = 1; else rt = 0;
n  Use in combination with beq, bne

 slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 1

Branch Instruction Design
n  Why not blt, bge, etc?
n  Hardware for <, ≥, … slower than =, ≠

n  Combining with branch involves more work
per instruction, requiring a slower clock

n  All instructions penalized!
n  beq and bne are the common case
n  This is a good design compromise

8 January 2015

Chapter 2 — Instructions: Language of the Computer 33

Acknowledgement
n  The slides are adapted from Computer

Organization and Design, 5th Edition, by
David A. Patterson and John L. Hennessy,
2013, published by MK (Elsevier)

Chapter 2 — Instructions: Language of the Computer — 1

