8 January 2015

CSE2021 Computer Organization

| Chapter 2

‘ Instructions: Language of the
Computer

Chapter 2 — Instructions: Language of the Computer — 1

| Instruction Set

‘ The repertoire of instructions of a
computer

Different computers have different
instruction sets

But with many aspects in common
Early computers had very simple
instruction sets

Simplified implementation
Many modern computers also have simple
instruction sets

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 1

| The MIPS Instruction Set

‘ Used as the example throughout the book
Stanford MIPS commercialized by MIPS

Technologies (

Large share of embedded core market
Applications in consumer electronics, network/storage
equipment, cameras, printers, ...

Typical of many modern ISAs

See MIPS Reference Data tear-out card, and
Appendixes B and E(on CD)

)

Chapter 2 — Instructions: Language of the Computer — 1

| MIPS Core Instructions

o (e 513253 [s1=s2e83 3 operaris; @ P
subtract sub §142.%3 $1=-%2-3%3 3 oparands; exception passibl
nod Immediate mod $1.53. 000 | $1 =53 + 100 = Constant: exceplion poss ke
e unpignad 300y $152.83 |51=%32+%3 3 sparands; no auceptions
subtract ensigned |subu $1.52.53 | $1=-52-%3 3 eperands: no exceplions

Bdd imm. unsign. | sddiu $1.82.100 | 31 = $2 + 100 + Ceagtant; no exceptiong
Mo I, copr, reg. |mie0 $1Sepe | $l=%ope Used to giet excoption PC
rnaPighy mult 52,53 Hi. Lo=$2 ¥ 53 B4bit sgned pracuct In HI, Lo
miztiply unsignas | muts $2.53 Hi. Lo = $2 ¥ 53 G4-02 UNSAENad Drocuct in Hi, Lo
gvide |ew$2%83 | Le=3$2-$3.Hi-$2med §3 | Lo - quotient. Hi - remainder

diide ursigned | dha 5253 Lo = §2 + $3, Hi = §2 mod 83 | Unsigned quotient and remaindes
Move from Hi mihi $1 $1=Hi ‘Used to get copy of HI
Mowe fom Lo |miio §1 fi=ls Use 1o gt copy of Lo
and and §1.52.53 $i=525483 3 register operands; logical AND
or 313253 [51=32133 3 register operands: legical OR
Logie | 21 immediste |and §3.42.300 | 4 =52 & 100 Logcal AND sagister, constant
orimmediate [5182000 [$1=%21100 Logizal OR register, constant
shift ieft logical |53 $2,%3,30 $1=32<<10 Shift left by constant
shift right legienl | =0 $4,52,10 $1=%52 =10 Shitf, rignt by constant
Data Inad ward b SL.A00052) | £1 = Memony [$2+100] Diata fram memony ta regl sher
wangter | Srereword | ow $1,100032) | Memory[§2+100] = $1 Drata frorm registes i memeany
load wpper imm. | ki $1.100 $1 = 100 x 218 Loads ecemtant in upser 16 bits

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

CSE2021 Computer Organization

| Number Systems

l Four Important Number Systems

System Why? Remarks
Decimal [Base 10 (10 fingers) Most used
system
Binary Base 2. On/Off 3 times more
systems digits than
decimal
Octal Base 8.Shorthand |3 times less
notation for working |digits than binary
with binary
Hex Base 16 4 times less

digits than binary

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

8 January 2015

| Positional Number Systems

Have a radix r (base) associated with them.
In the decimal system, r=10:
Ten symbols: 0, 1, 2, ..., 8,and 9
More than 9 move to next position, so each
position is power of 10

Nothing special about base 10 (used
because we have 10 fingers)

What does 642.391,, mean?

6x102+4x10"+2x10° . 3x10"+9x102+1x103
< ? >
Increasingly +ve Radix point Increasingly -ve
powers of radix powers of radix

Chapter 2 — Instructions: Language of the Computer — 1

| Positional Number Systems
| What does 642.391,, mean?

Radix point
Base 10 102 10? 100 10 102 103
(n (100) (10) (1) (0.1) | (0.01) | (0.001)
Coefficient 6 4 2 3 9 1
(a)
Product: aj*t" 600 40 2 0.3 0.09 | 0.001
Value =600+ 40+2+0.3+0.09+0.001 =642.391

Multiply each digit by appropriate power of 10
and add them together

In general: E a,xr

i=—m

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 4

Number
system
Binary
Octal
Decimal
Hexadecimal

| Positional Number Systems

Radix Symbols
2 {0,1}
8 {0,1,2,3,4,5,6,7}

10
16

{0,1,2,3,4,5,6,7,8,9}
{Ol1 ’2’3’4’5’6’7,8,9,a,b,0’d’e’f}

Chapter 2 — Instructions: Language of the Computer — 1

Binary Number System

Decimal

NoaahkhwWwN-=-0

Binary

0000
0001
0010
0011

0100
0101
0110
0111

Decimal Binary
8 1000
9 1001
10 1010
1 1011
12 1100
13 1101
14 1110
15 1111

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

| Octal Number System

| Decimal Octal Decimal

0 0 8

1 1 9

2 2 10
3 3 11
4 4 12
5 5 13
6 6 14
7 7 15

Octal

10
11
12
13
14
15
16
17

Chapter 2 — Instructions: Language of the Computer — 1

| Decimal Hex Decimal

0 0 8
1 1 9
2 2 10
3 3 1
4 4 12
5 5 13
6 6 14
7 7 15

| Hexadecimal Number System

Hex

TMOO WX o o

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

0000
0001
0010
0011
0100
0101
0110
0111

NoahwdhNh-=0

‘ Decimal Binary Octal Hex Decimal Binary Octal

N~Nooah~hwWDMN-=-O0O

| Four Number Systems

Hex
0 8 1000 10 8
1 9 1001 1 9
2 10 1010 12 A
3 1 1011 13 B
4 12 1100 14 C
5 13 1101 15 D
6 14 1110 16 E
7 15 1111 17 F

Chapter 2 — Instructions: Language of the Computer — 1

CSE2021 Computer Organization

‘ Conversion between
number systems

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

8 January 2015

| Conversion: Binary to Decimal

| Binary = —— Decimal

1101.011,—» (22)4

ro| 238) | 224) | 2'(2) | 2°(1) | 2(0.5 | 22(0.25) | 2-3(0.125
))

a; 1 1 0 1 0 1 1

a;’r 8 4 0 1 0 0.25 0.125

(1101.011),=8 +4 +1 + 0.25 + 0.125 = 13.375

1Tx282+1x22+0x2"+1x20 . 0x27+1x22+1x23=13.375,,

Binary point

Chapter 2 — Instructions: Language of the Computer — 1

| Conversion: Decimal to Binary

| A decimal number can be converted to binary by
repeated division by 2 if it is an integer

number +2 Remainder

155 ,77 1 Least Significant A
| Bit (LSB) Arrange

77 38 1 remainders
38* 19 0 in reverse
19% .9 1 order

9¥ .4 1

4 * 2 0

2 ‘*'/1 0

1% 0 1 Most Significant

Bit(MSB) ~ —> 155,,= 10011011,

Chapter 2 — Instructions: Language of the Computer 8

| Conversion: Decimal to Binary

If the number includes a radix point, it is necessary to
separate the number into an integer part and a fraction
part, each part must be converted differently.

Decimal — Binary

(27.375),g—> (?7),

number =2

Remainder

number X2 Integer
27 A3 T 1 0375 075 0
13+ -6 1 0.75«1.50 1
6+ -3 0 0.50«"1.0 1
3+ 1 1
1 P 0 1 Arrange in order: 011

Arrange remainders in reverse order: 11011
=> 27.375,,=11011.011,

Chapter 2 — Instructions: Language of the Computer — 1

Conversion: Octal to Binary

Octal — Binary
345.5602;—> (??),

345.560 2

R =
011100101 101110 000 010

345.56024=11100101.101110000010,,

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

| Conversion: Binary to Octal

| Binary — Octal

11001110.0101101, (%) 2iiing zeros

11001110 . 010110100

—— = —_— e ——
3 1 6 ‘ 2 6 4
Group by 3's| ' | Group by 3’s

Add leading zeros if necessary| | Add trailing zeros if necessary

11001110.0101101, = 316.2644

Chapter 2 — Instructions: Language of the Computer — 1

| Conversion: Binary to Hex

| Binary — Hex
11100101101.1111010111,— (??)4¢
Note trailing zeros

/

11100101101 . 111101011100

—_— e ——
7 2 D F 5 C

Group by 4’s|'| Group by 4’s
Add leading zeros if| | Add trailing zeros if
necessary| |necessary

= 72D.F5C,q

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

10

| Conversion: Hex to Binary

| Hex — Binary
BOA4.E6C,;, — (?7),

1011100110100100 . 111001101100
(S G Gl —_— —_— =

B 9 4 4 E 6 C

1011100110100100.111001101100,

Chapter 2 — Instructions: Language of the Computer — 1

| Conversion: Hex to Decimal

| Hex — Decimal
B63.4C,s— (?7?)4
162 161 16° 16-1 162
B (=11) 6 3 4 C (=12)
= 2816 + 96 + 3 + 0.25 + 0.046875 = 2915.296875

11x16> +6x16' +3x16° . 4x16™ +12x16™ = 2915296875,

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

11

8 January 2015

| Activity 1

| Convert the hexadecimal number A59.FCE
to binary

Convert the decimal number 166.34 into
binary

Chapter 2 — Instructions: Language of the Computer — 1

| Binary Numbers

| How many distinct numbers can be represented by n bits?

No. of Distinct nos.

bits

1 2{0,1}

2 4 {00, 01, 10, 11}

3 8 {000, 001, 010, 011, 100, 101, 110, 111}
n 2n

Number of permutations double with every extra
bit
2" unique numbers can be represented by n bits

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 12

| Number System and Computers

Some tips

Binary numbers often grouped in fours for
easy reading

1 byte=8-bit, 1 word = 4-byte
In computer programs (e.g. Verilog, C) by
default decimal is assumed

To represent other number bases use

System Representation = Example for 20
Hexadecimal Ox... 0x14
Binary Ob... 0b10100
Octal 0o... (zero and 0024
‘0')

Chapter 2 — Instructions: Language of the Computer — 1

| Number System and Computers

Addresses often written in Hex

Most compact representation
Easy to understand given their hardware
structure

For a range 0x000 — OxFFF, we can
immediately see that 12 bits are needed, 4K
locations

Tip: 10 bits = 1K

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

13

CSE2021 Computer Organization

|
‘ Signed Binary

Chapter 2 — Instructions:
Language of the Computer — 1

l Negative numbers representation

Three kinds of representations are common:
Signed Magnitude (SM)
One’ s Complement
Two’ s Complement

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

14

| Signed Magnitude Representation

(5 R P }
f f
Sign bit (n-1)

(left most) magnitude bits

0 indicates +ve
1 indicates -ve

8 bit representation for +13 is ' 0001101

8 bit representation for -13 is 0001101

Chapter 2 — Instructions: Language of the Computer — 1

| 1’ s Complement Notation

| Let N be an n-bit number and N(1) be the 1’ s
Complement of the number. Then,

N(1)=27-1-N

The idea is to leave positive numbers as is, but to
represent negative numbers by the 1’s Complement of
their magnitude.

Example: Let n = 4. What is the 1” s Complement
representation for +6 and -67?

+6 is represented as 0110 (as usual in binary)

-6 is represented by 1’ s complement of its magnitude (6)

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

15

8 January 2015

| 1’ s Complement Notation

| 1’ s C representation can be computed in 2 ways:
Method 1: 1’ s C representation of -6 is:

24-1-|N| = (16 = 1 = B)5 = (9); = (1001),

Method 2: For -6, the magnitude = 6 =
(0110),

The 1’ s C representation is obtained by
complementing the bits of the magnitude:

(1001),
24-1-|N| = (16);5— 1= |N| = (15),0— N
= (1111), — |N]|

Chapter 2 — Instructions: Language of the Computer — 1

| 2’ s Complement Notation

| Let N be an n bit number and N(2) be the 2’ s
Complement of the number. Then,

N@2)=27-N

Again, the idea is to leave positive numbers as is, but to
represent negative numbers by the 2’s C of their
magnitude.

Example: Let n = 5. What is the 2’ s C representation for
+11 and -137?

+11 is represented as 01011 (as usual in binary)
-13 is represented by 2’ s complement of its magnitude (13)

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 16

| 2’ s Complement Notation

2’ s C representation can be computed in 2 ways:

Method 1: 2’ s C representation of -13 is 2°
- IN| = (32 = 13)5 = (19)40 =

Method 2: For -13, the magnitude = 13 =
(01101),

The 2’ s C representation is obtained by adding
1 to the 1’ s C of the magnitude

25 IN|=(2°=1—|N))+1=1"sC +1
01101 —=-10010—“L 10011

Chapter 2 — Instructions: Language of the Computer — 1

Comparing all Signed Notations

0000
0001
0010
0011
0100
0101
0110
0111

1000
1001
1010
1011

1100
1101

1110
11

In all 3 representations, a
—ve number has a 1 in
MSB location

To handle —ve numbers
using n bits,
= 21 symbols can be used
for positive numbers
= 21 symbols can be used
for negative umbers
In 2" s C notation, only 1
combination used for 0

UdbhbdbbDid~Noarwnad
SANVLAOSNNoo N

LOOAOhSNONoOoarON2O

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

17

8 January 2015

CSE2021 Computer Organization

| Instructions

Chapter 2 — Instructions: Language of the Computer — 1

| Arithmetic Operations

Add and subtract, three operands

Two sources and one destination
add a, b, ¢ # a gets b + c
All arithmetic operations have this form
Design Principle 1: Simplicity favours
regularity

Regularity makes implementation simpler

Simplicity enables higher performance at
lower cost

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 18

| Arithmetic Example

C code:
f=0@+h -G+ 3);
Compiled MIPS code:

add t0, g, h # temp t0 =g
add t1, 1, jJ # temp tl = 1
sub f, tO, t1 # f = t0 - tl

+ h
+]

Chapter 2 — Instructions: Language of the Computer — 37

| Register Operands (1)

' Reglner' -Mnemonlc '

Number
0

91
$2.83
$4-357

§-315

$16-323

Arithmetic instructions use register operands

MIPS has a 32 x 32-bit register file(32-bit data

called a “word”), numbered from 0 to 31

Use for frequently accessed data

. Register 'Mnemonlc. [

Conventional Use Conventional Use

Name Number Name
2ero Permanently O $24, 325 | 913, $19 Temporay
Pat Assembler Temporary (reserved) $26.827 | S0, $k1 EO"E;MI (reserved for
0, 31 Value returned by asubroutine P28 $gp Glaobal Pointer
$e0-$e3 | Arguments to asubroutine $29 Sop Steck Pointer
Temporary
St0-317 (ot preserved across a function 530 Stp Frame Pointer
call)
& -
$50-8g7 | Saved registers 331 Sra Return Address

(preserved across a function call)

Chapter 2 — Instructions: Language of the Computer

8 January 2015

19

| Register Operand (2)

Design Principle 2: Smaller is faster

Example:
Ccode: f=(g+h)-(i+]j)
MIPS code
add $t0, $s1, $s2 $50 | Ss1] $52 | $53 | $54 | $55 | $56 | $57

add $t1, $s3, $s4
sub $t2, $t0, $t1 307 g h

i

St0 | St1 | St2 | $t3 | St4 | St5

$t0 - $t7 | g+h | i+j | final

St6 | 5t7 | S$t8 | St9

Chapter 2 — Instructions: Language of the Computer — 1

| Memory Operands (1)

Main memory used for
composite data

Arrays, structures, dynamic data
Memory is byte addressed
Each address identifies an 8-bit
byte
Words are aligned in memory
Address must be a multiple of 4
Length of an address is 32-bit
Min value of address =0
Max value of address = (232-1)
MIPS is Big Endian

Most-significant byte at least
address of a wor

Address
4*N

8

DATA 32-b
10101010

10101010
01001110
110...0100

Register

Memory 0AOBOCOD

I

Big-endian

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

20

| Memory Operands (2)

Data

Data is transferred between memory and register
using data transfer instructions: Iw and sw

loadword 1w $s1,100($s2) $sl — memory[$s2+4100] Memory to Register

transfer storeword v $51,100($52) memory[5s2+100]— Ssl Register to memory

$s1 is receiving register
$s2 is base address of memory, 100 is called the offset,
so ($s2+100) is the address of memory location

Chapter 2 — Instructions: Language of the Computer — 1

| Memory Operand Example 1

C code:
g = h + A[8];

gin $s1, h in $s2, base address of A in $s3
Compiled MIPS code:

Index 8 requires offset of 32
4 bytes per word

Tw $t0, 32($s3) # load word
add $s1,/$s2, |$t0

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

21

8 January 2015

| Memory Operand Example 2

| C code:
A[12] = h + A[8];
hin $s2, base address of A in $s3
Compiled MIPS code:

Index 8 requires offset of 32

Tw $t0, 32($s3) # load word
add $t0, $s2, $tO
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 1

| Registers vs. Memory

| Registers are faster to access than
memory
Operating on memory data requires loads
and stores
More instructions to be executed
Compiler must use registers for variables
as much as possible

Only spill to memory for less frequently used
variables

Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 22

| Immediate Operands

Constant data specified in an instruction
addi $s3, $s3, 4
No subtract immediate instruction

Just use a negative constant
addi $s2, $s1, -1

Design Principle 3: Make the common
case fast

Small constants are common

Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 1

| The Constant Zero

MIPS register 0 ($zero) is the constant 0
Cannot be overwritten
Useful for common operations

E.g., move between registers
add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

23

8 January 2015

| Sign Extension

‘ Representing a number using more bits
Preserve the numeric value
In MIPS instruction set
addi: extend immediate value
1b, Th: extend loaded byte/halfword
beq, bne: extend the displacement
Replicate the sign bit to the left
c.f. unsigned values: extend with Os
Examples: 8-bit to 16-bit
+2: 0000 0010 => 000 0010
-2: 11111110 => 111 1110

Chapter 2 — Instructions: Language of the Computer — 1

CSE2021 Computer Organization

‘ Presenting MIPS
Instructions in
Binary

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 24

8 January 2015

| Representing Instructions

| Instructions are encoded in binary
Called machine code

MIPS instructions
Encoded as 32-bit instruction words

Small number of formats encoding operation code
(opcode), register numbers, ...

Regularity!

Register numbers
$t0 — $t7 arereg’s 8 — 15
$t8 — $t9 are reg’ s 24 — 25
$s0 — $s7 are reg’s 16 — 23

Chapter 2 — Instructions: Language of the Computer — 1

| MIPS R-format Instructions

| | op | rs | rt | rd |shamt| funct |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Instruction fields
op: operation code (opcode)
rs: first source register number
rt: second source register number
rd: destination register number
shamt: shift amount (00000 for now)
funct: function code (extends opcode)

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 25

8 January 2015

| R-format Example

op | rs | rt | rd | shamt | funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

add $t0, $s1, $s2

|specia|| $s1 | $s2 | $t0 | 0 | add |

| o | 17| 18 | 8 | o | 32 |

| 000000 | 10001 | 10010 | 01000 | 00000 | 100000 |

00000010001100100100000000100000, = 023240204

Chapter 2 — Instructions: Language of the Computer — 1

| MIPS I-format Instructions

| | op | rs | rt | constant or address |
6 bits 5 bits 5 bits 16 bits

Immediate arithmetic and load/store instructions

rt: destination or source register number
Constant: =215 to +215 — 1
Address: offset added to base address in rs

Example: Load array A[8] to register $t0, base
address of A in $s3

lw $t0, 32($s3)
op rs rt Constant or address
35 19 8 32
100011 10011 01000 0000,0000,0010,0000

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 26

| MIPS I-format Instructions

| Design Principle 4: Good design demands good
compromises

Different formats complicate decoding, but allow 32-bit
instructions uniformly

Keep formats as similar as possible

Chapter 2 — Instructions: Language of the Computer — 1

| Stored Program Computers

| Instructions represented in
binary, just like data

Do Nemany T Instructions and data stored
Mt in memory
| Eator program | Programs can operate on
! (machine '
LDETE.L programs
) C compiller h . .
Processor | || (machine code) | e.g., compilers, linkers, ...
| Payolcats | Binary compatibility allows
essssssssss. compiled programs to work
™= | on different computers
i ,i,"n;ff,‘,’ggﬁ Standardized ISAs

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

27

| Logical Operations

Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << s11

Shift right >> >>> sri
Bitwise AND & & and, andi
Bitwise OR | | or, ori
Bitwise NOT ~ ~ nor

Useful for extracting and inserting
groups of bits in a word

Chapter 2 — Instructions: Language of the Computer — 1

| Shift Operations
| | op | rs | rt | rd | shamt | funct |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

shamt: how many positions to shift

Shift left logical
Shift left and fill with O bits
s11 by i bits multiplies by 2/
Shift right logical
Shift right and fill with O bits
sr1 by i bits divides by 2/ (unsigned only)

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

28

8 January 2015

| AND Operations

| Useful to mask bits in a word
Select some bits, clear others to 0

and $t0, $tl, $t2

$t2 ’ 0000 0000 0000 0000 0000 1101 1100 0000 ‘

$t1 ’ 0000 0000 0000 0000 0011 1100 0000 0000 ‘

$t0 ’ 0000 0000 0000 0000 0000 1100 0000 0000 ‘

Chapter 2 — Instructions: Language of the Computer — 1

| OR Operations

| Useful to include bits in a word
Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

$t2 ’ 0000 0000 0000 0000 0000 1101 1100 0000 ‘

$t1 ’ 0000 0000 0000 0000 0011 1100 0000 0000 ‘

$to ’ 0000 0000 0000 0000 0011 1101 1100 0000 ‘

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 29

8 January 2015

| NOT Operations

| Useful to invert bits in a word
ChangeOto1,and1t00
MIPS has NOR 3-operand instruction
aNORO==NOT(aORO0)=NOTa
Example:
a=0000 0000 0000 0000 0000 0000 1100 1010
a is placed in $tl — |Register0: always

read as zero
nor $t0, $tl, $zero
$t1 ’ 0000 0000 0000 0000 0000 0000 1100 1010 ‘

$t0 ’1111 1111 1111 1111 1111 1111 0011 0101 ‘

Chapter 2 — Instructions: Language of the Computer — 1

| Conditional Operations

| Branch to a labeled instruction if a
condition is true

Otherwise, continue sequentially
beqg rs, rt, L1

if (rs == rt) branch to instruction labeled L1;
bne rs, rt, L1

if (rs !=rt) branch to instruction labeled L1;
j Ll

unconditional jump to instruction labeled L1

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 30

| Example: If Statements

| C code:
if (i==j) f = g+h; | ‘0
else 7 = g-h Ew
f, g,h,i,jin $s0 ~ $s4 | e
Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $sl1, $s2

j Exit
Else: sub $s0, $s1, $s2
EX'itf\

| Assembler calculates addresses |

Chapter 2 — Instructions: Language of the Computer — 1

| Example: Loop Statements

| C code:
while (save[i] == k) 1 += 1;

iin $s3, k in $s5, address of save in $s6
Compiled MIPS code:

Loop: s11 $t1,$s3,2 # ixX4 get offset
add $t1,$tl, $s6 #get address
Tw $t0, 0($tl) #$tO=saveli]
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop
Exit: ..

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

31

| More Conditional Operations

| Set result to 1 if a condition is true
Otherwise, set to 0
slt rd, rs, rt
if(rs<rt)rd=1;elserd =0;
slti rt, rs, constant
if (rs < constant) rt = 1; else rt = 0;

Use in combination with beq, bne

s1t $t0, $s1, $s2 # if ($sl < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 63

| Branch Instruction Design

| Why not bTt, bge, etc?
Hardware for <, 2, ... slower than =, #

Combining with branch involves more work
per instruction, requiring a slower clock

All instructions penalized!
beq and bne are the common case
This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer

8 January 2015

32

8 January 2015

| Acknowledgement

| The slides are adapted from Computer
Organization and Design, 5" Edition, by
David A. Patterson and John L. Hennessy,
2013, published by MK (Elsevier)

Chapter 2 — Instructions: Language of the Computer — 1

Chapter 2 — Instructions: Language of the Computer 33

