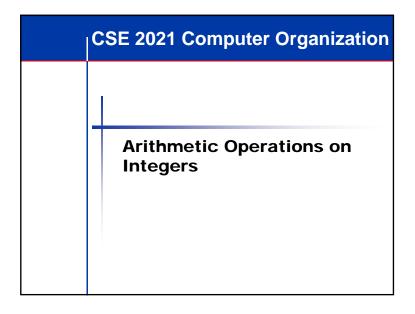
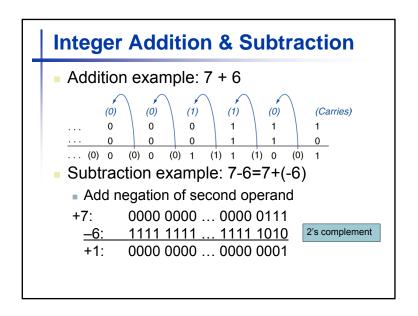
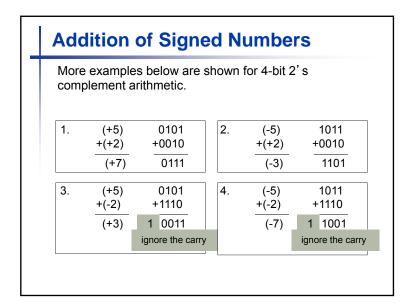
CSE 2021 Computer Organization Chapter 3 Arithmetic for Computers

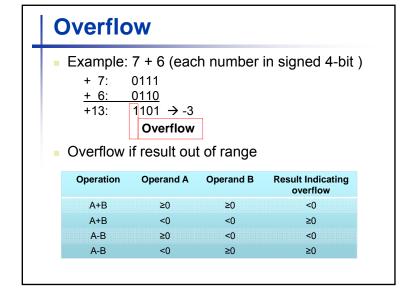
Arithmetic for Computers

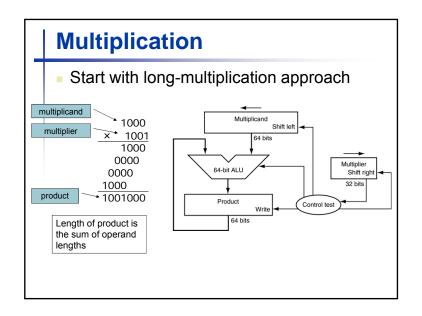
- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations



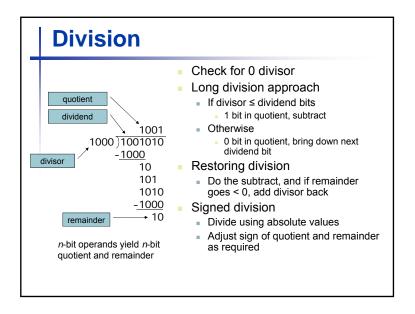






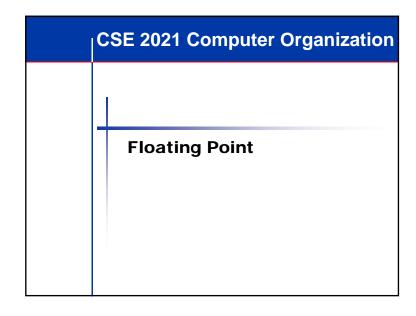


MIPS Multiplication Two 32-bit registers for product HI: most-significant 32 bits LO: least-significant 32-bits Instructions mul t rs, rt 64-bit product in HI/LO mfhi rd / mfl o rd Move from HI/LO to rd Can test HI value to see if product overflows 32 bits mul rd, rs, rt Least-significant 32 bits of product -> rd



MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt
 - No overflow or divide-by-0 checking
 - Software must perform checks if required
 - Use mfhi, mfl o to access result



Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation

 - +0.002 × 10⁻⁴ not normalized +987.02 × 10⁹
- In binary
 - $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Types fl oat and doubl e in C

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits double: 11 bits single: 23 bits double: 52 bits S Exponent Fraction

 $x = (-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001
 - \Rightarrow actual exponent = 1 127 = –126
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110
 - \Rightarrow actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 00000000001
 - \Rightarrow actual exponent = 1 1023 = –1022
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110
 - \Rightarrow actual exponent = 2046 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × $\log_{10}2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 × $\log_{10}2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Activity 1

 Represent (-0.75)₁₀ in single and double precision of IEEE 754 binary representation

Activity 2

- What number is represented by the singleprecision float
 - 11000000101000...00

Floating-Point Addition

- Consider a 4-digit decimal example
 - $-9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Align decimal points
 - Shift number with smaller exponent
 - $= 9.999 \times 10^{1} + 0.016 \times 10^{1}$
- 2. Add significands
 - $-9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalize result & check for over/underflow
 - 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002 × 10²

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Add significands
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $-1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
- FP instructions operate only on FP registers
 - Programs generally don't do integer ops on FP data, or vice versa
 - More registers with minimal code-size impact
- FP load and store instructions
 - I wc1, I dc1, swc1, sdc1e.g., I dc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add. s, sub. s, mul. s, div.se.g., add. s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add. d, sub. d, mul . d, di v. d
 e.g., mul . d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c. xx. s, c. xx. d (xx is eq, I t, I e, ...)
 - Sets or clears FP condition-code bit
 - e.g. c. It. s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow
- MIPS ISA
 - Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
 - Other instructions: less frequent

Acknowledgement

 The slides are adapted from Computer Organization and Design, 4th Edition, by David A. Patterson and John L. Hennessy, 2008, published by MK (Elsevier)