2 October 2013

CSE 2021 Computer Organization | Arithmetic for Computers

| Operations on integers
Addition and subtraction
Multiplication and division
Dealing with overflow
Floating-point real numbers
Representation and operations

| Chapter 3

| Arithmetic for Computers

|CSE 2021 Computer Organization | Integer Addition & Subtraction

Addition example: 7 + 6

| OW (0)/.\ (T)/\\ (1)/-\ ﬂ\ (Carries)

| Arithmetic Operatlons on . O o (o) 0 o) 1 (1) 1 1) 0 (o) 1
Integers Subtraction example: 7-6=7+(-6)
Add negation of second operand
+7: 0000 0000 ... 0000 0111

—6: 11111111... 1111 1010

+1: 0000 0000 ... 0000 0001

Chapter 3 — Arithmetic for Computers 1

2 October 2013

| Addition of Signed Numbers

More examples below are shown for 4-bit 2’ s
complement arithmetic.

1. (+5) 0101 2. (-5) 1011
+(+2) +0010 +(+2) +0010
(+7) 0111 (-3) 1101
3 (+5) 0101 4. (-5) 1011
+(-2) +1110 +(-2) +1110
(+3) | 1 0011 -7) 1 1001

ignore the carry ignore the carry

| Overflow

Example: 7 + 6 (each number in signed 4-bit)

+ 7 0111
+ 6: 0110
+13: E101 > -3

Overflow

Overflow if result out of range

Operation Operand A Operand B Result Indicating
overflow
A+B =0 20 <0
A+B <0 <0 20
A-B 20 <0 <0
A-B <0 20 20

| Multiplication

multiplicand -
- - 1000 Multiplicand
X Shift left
X 1001 64 bits

0000
0000 84-bit ALU
1000
1001000 Product

Start with long-multiplication approach

1000 1

Write

|64 bits

Length of product is
the sum of operand
lengths

Multiplier
Shift right

32 bits .

MIPS Multiplication

Two 32-bit registers for product
HI: most-significant 32 bits
LO: least-significant 32-bits

Instructions
mult rs, rt
64-bit product in HI/LO
mfhi rd / mflo rd
Move from HI/LO to rd
Can test HI value to see if product overflows 32 bits
mul rd, rs, rt
Least-significant 32 bits of product —> rd

Chapter 3 — Arithmetic for Computers

| Division

\\
1001

1000)1001010
Cawer]” 1000

101
1010
-1000

[emaider] ——— 10

n-bit operands yield n-bit
quotient and remainder

Check for 0 divisor

Long division approach
If divisor < dividend bits
1 bit in quotient, subtract
Otherwise

0 bit in quotient, bring down next
dividend bit

Restoring division
Do the subtract, and if remainder
goes < 0, add divisor back
Signed division
Divide using absolute values

Adjust sign of quotient and remainder
as required

2 October 2013

| MIPS Division

|CSE 2021 Computer Organization

| Floating Point

Use HI/LO registers for result
HI: 32-bit remainder
LO: 32-bit quotient
Instructions
div rs, rt
No overflow or divide-by-0 checking
Software must perform checks if required
Use mfhi, mFlo to access result

| Floating Point

Chapter 3 — Arithmetic for Computers

Representation for non-integral numbers
Including very small and very large numbers
Like scientific notation

~2.34 X 10% - [[imalaed |
N — T

+987.02 x 109
In binary
1.XXXXXXX, X 299

Types float and doublein C

| Floating Point Standard

| Defined by IEEE Std 754-1985
Developed in response to divergence of
representations

Portability issues for scientific code
Now almost universally adopted
Two representations

Single precision (32-bit)

Double precision (64-bit)

2 October 2013

| IEEE Floating-Point Format

| single: 8 bits single: 23 bits

double: 11 bits double: 52 bits
‘S‘ Exponent ‘ Fraction ‘

X = (=1)° x (1+ Fraction) x 2(Esorent-8=s)

S: sign bit (0 = non-negative, 1 = negative)
Normalize significand: 1.0 < |significand| < 2.0

Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

Significand is Fraction with the “1.” restored

Exponent: excess representation: actual exponent + Bias
Ensures exponent is unsigned
Single: Bias = 127; Double: Bias = 1203

| Single-Precision Range

| Exponents 00000000 and 11111111 reserved

Smallest value

Exponent: 00000001
= actual exponent =1 - 127 = -126

Fraction: 000...00 = significand = 1.0
+1.0 x 27126~ £12 x 10-%8
Largest value

exponent: 11111110
= actual exponent = 254 — 127 = +127

Fraction: 111...11 = significand = 2.0
+2.0 x 2*127= £3.4 x 10*38

| Double-Precision Range

Chapter 3 — Arithmetic for Computers

| Exponents 0000...00 and 1111...11 reserved

Smallest value

Exponent: 00000000001
= actual exponent = 1 — 1023 = -1022

Fraction: 000...00 = significand = 1.0
+1.0 x 27102 = +22 x 107308
Largest value

Exponent: 11111111110

= actual exponent = 2046 — 1023 = +1023
Fraction: 111...11 = significand = 2.0
+2.0 x 271028 = +1.8 x 10+308

| Floating-Point Precision

| Relative precision
all fraction bits are significant
Single: approx 2-23
Equivalent to 23 X log,,2 =23 X 0.3 = 6 decimal
digits of precision
Double: approx 2-52

Equivalent to 52 X log,,2 =52 X 0.3 = 16 decimal
digits of precision

2 October 2013

| Activity 1

| Represent (-0.75),, in single and double
precision of IEEE 754 binary
representation

| Activity 2

| What number is represented by the single-
precision float

1000000101000...00

| Floating-Point Addition

Chapter 3 — Arithmetic for Computers

| Consider a 4-digit decimal example

9.999 x 10"+ 1.610 x 10"

1. Align decimal points
Shift number with smaller exponent
9.999 x 10"+ 0.016 x 10!

2. Add significands
9.999 x 10"+ 0.016 x 10" =10.015 x 10°

3. Normalize result & check for over/underflow
1.0015 x 102

4. Round and renormalize if necessary
1.002 x 102

| Floating-Point Addition

| Now consider a 4-digit binary example
1.000, x 2-1+-1.110, X 272 (0.5 + —-0.4375)
1. Align binary points
Shift number with smaller exponent
1.000, x 2-'+-0.111, x 21
2. Add significands
1.000, x 2-1+-0.111, x 2-1=0.001, x 2-1
3. Normalize result & check for over/underflow
1.000, x 2-4, with no over/underflow
4. Round and renormalize if necessary
1.000, x 24 (no change) = 0.0625

2 October 2013

| FP Instructions in MIPS

| FP hardware is coprocessor 1
Adjunct processor that extends the ISA
Separate FP registers
32 single-precision: $f0, $f1, ... $f31
Paired for double-precision: $f0/$f1, $f2/$f3, ...
FP instructions operate only on FP registers

Programs generally don’t do integer ops on FP data,
or vice versa

More registers with minimal code-size impact
FP load and store instructions

Iwcl, Idcl, swcl, sdcl
e.g., ldcl $f8, 32($sp)

| FP Instructions in MIPS

| Single-precision arithmetic
add.s, sub.s, mul.s, div.s
e.g.,add.s $f0, $fl, $f6
Double-precision arithmetic
add.d, sub.d, mul.d, div.d
eg.,mul.d $f4, $f4, $f6
Single- and double-precision comparison
c.xx.s,c.xx.d (xxiseq, It, le, ...)

Sets or clears FP condition-code bit
eg.c.lt.s $f3, $f4

Branch on FP condition code true or false

bclt, bclf
e.g.,, bclt TargetLabel

| Concluding Remarks

Chapter 3 — Arithmetic for Computers

| ISAs support arithmetic
Signed and unsigned integers
Floating-point approximation to reals
Bounded range and precision
Operations can overflow and underflow
MIPS ISA

Core instructions: 54 most frequently used
100% of SPECINT, 97% of SPECFP

Other instructions: less frequent

2 October 2013

| Acknowledgement

| The slides are adapted from Computer
Organization and Design, 4t Edition, by
David A. Patterson and John L. Hennessy,
2008, published by MK (Elsevier)

Chapter 3 — Arithmetic for Computers 7

