
1

EECS 2021 Computer Organization

Chapter 4 Part 3
The Processor - Pipelining

Pipeline Summary

 Pipelining improves performance by
increasing instruction throughput
 Executes multiple instructions in parallel

 Each instruction has the same latency

 Subject to hazards
 Structure, data, control

 Instruction set design affects complexity of
pipeline implementation

2

MIPS Pipelined Datapath

WB

MEM

Right-to-left
flow leads to
hazards

Pipeline registers

 Need registers between stages
 To hold information produced in previous cycle

3

Pipeline Operation

 Cycle-by-cycle flow of instructions through
the pipelined datapath
 “Single-clock-cycle” pipeline diagram

 Shows pipeline usage in a single cycle

 Highlight resources used

 c.f. “multi-clock-cycle” diagram
 Graph of operation over time

 We’ll look at “single-clock-cycle” diagrams
for load & store

Single-Clock-Cycle Diagram

 IF for Load and Store

4

ID for Load, Store, …

EX for Load

5

MEM for Load

WB for Load

Wrong
register
number

6

Corrected Datapath for Load

EX for Store

7

MEM for Store

WB for Store

8

Multi-Cycle Pipeline Diagram

 Form showing resource usage

Multi-Cycle Pipeline Diagram

 Traditional form

9

Single-Cycle Pipeline Diagram

 State of pipeline in a given cycle

Pipelined Control (Simplified)

10

Pipelined Control

 Control signals derived from instruction
 As in single-cycle implementation

Pipelined Control

11

Data Hazards in ALU Instructions

 Consider this sequence:
sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

 We can resolve hazards with forwarding
 How do we detect when to forward?

Dependencies & Forwarding

Assume that $2: initial value=10, value after sub=-20

12

Detecting the Need to Forward

 Pass register numbers along pipeline
 e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register

 ALU operand register numbers in EX stage
are given by
 ID/EX.RegisterRs, ID/EX.RegisterRt

 Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

*Recall for R-type: add rd, rs, rt, i.e. ALU uses values of
rs and rt registers for calculation.

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

Detecting the Need to Forward

 But only if forwarding instruction will write
to a register!
 EX/MEM.RegWrite, MEM/WB.RegWrite

 And only if Rd for that instruction is not
$zero
 EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

13

Forwarding Paths

Forwarding Conditions
 EX hazard

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

ForwardA = 10

 if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))

ForwardB = 10

 MEM hazard
 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

 if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

ForwardB = 01

14

Datapath with Forwarding

Load-Use Data Hazard

Need to stall
for one cycle

15

Load-Use Hazard Detection

 Check when using instruction is decoded
in ID stage

 ALU operand register numbers in ID stage
are given by
 IF/ID.RegisterRs, IF/ID.RegisterRt

 Load-use hazard when
 ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

 If detected, stall and insert bubble

How to Stall the Pipeline

 Force control values in ID/EX register
to 0
 EX, MEM and WB do nop (no-operation)

 Prevent update of PC and IF/ID register
 Using instruction is decoded again

 Following instruction is fetched again

 1-cycle stall allows MEM to read data for lw
 Can subsequently forward to EX stage

16

Stall/Bubble in the Pipeline

OR IF
repeated

Stall inserted
here

Datapath with Hazard Detection

17

Stalls and Performance

 Stalls reduce performance
 But are required to get correct results

 Compiler can arrange code to avoid
hazards and stalls
 Requires knowledge of the pipeline structure

Branch Hazards

 If branch outcome determined in MEM

PC

Flush these
instructions
(Set control
values to 0)

7

Branch to PC+4+7*4=72

18

Solution to Control Hazard

 Example: branch taken
36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

...
72: lw $4, 50($7)

 Assume additional hardware to determine
outcome of branch in ID stage
 Target address adder: PC+4+4*7=72

 Register comparator: e.g. if $1=$3

Example: Branch Taken

19

Example: Branch Taken

