EECS 2021 Computer Organization

| Chapter 4 Part 3

| The Processor - Pipelining

| Pipeline Summary

Pipelining improves performance by
increasing instruction throughput
Executes multiple instructions in parallel
Each instruction has the same latency
Subject to hazards
Structure, data, control

Instruction set design affects complexity of
pipeline implementation

| MIPS Pipelined Datapath

F: Instruction fetch

1D: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access

=

Right-to-left
flow leads to
hazards

Address

Instruction

Instruction
memory

Address

—| Read Read
register 1 data 1
g »| Read
register 2
Registers OM
Wiite: Read
register data2 u
x
Wiite: 1
/' data
16 m a2
@

WB: Write back

|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
i
|
|
I
|
|
|
4
I
|
|
|
|
|
i
I
|
|
I
|
|
|
|
|
|
|
|

| Pipeline registers

| Need registers between stages
To hold information produced in previous cycle

—

l

1D

IDEX

>

1

Instruction
memory

Read o
rogrter 1
ek data 1

Instruction

Read

rogter
O egisters pgag
| Write data 2|
rogsar

writo

aata

16
.

sign- | 32
extend

shin
loft 2

result

Zord
ALY Ay
rosul
=

EXMEM

MEMWE

| Pipeline Operation

| Cycle-by-cycle flow of instructions through
the pipelined datapath
“Single-clock-cycle” pipeline diagram
Shows pipeline usage in a single cycle
Highlight resources used
c.f. “multi-clock-cycle” diagram
Graph of operation over time
WEe'll look at “single-clock-cycle” diagrams
for load & store

| Single-Clock-Cycle Diagram

| IF for Load and Store

| ID for Load, Store, ...

w
| |

! Instruction decode ‘

IFID IDEX EXMEM MEMWE
—
Add
4 —
5
FC T ad
H Read
L,! : egistar 1 Foad | o
w Read
Instruction rogistar 2
e =
memert Wit dame[>
register
wite
s
* sign- | %
‘extend
W
Execution
IFID ID/EX EXMEM MEMWB
Add
4 —= AdaAdd
Shift result
left 2
Address - Read
H " Read
(- 2 register el —1
E3 Read
Instruction [& register 2 ALU 4y
] e Regist
memory wita 0 ead | o resu
1 register data 2 o
—-| Write
data =~
16 a2

| MEM for Load

Memory

) IDEX EXMEM MEMWE
—
Add
4 —
[% Read oas
tor 1 e
H register e —]
< Read
ruction rogistor2
Instruct A S
Wiite daa[
rogistor
wirte
e
16 sign- | 2
"1 extena
F1D 10EX EXMEM MEWWE
—
g
4= For]
shift
left 2
[2 Fead
H rogistor 1 Read ||
L g 1
= Read
Instruction
— 4 Registers Roag - -
| Write data 2
g
1% sign- | 2
W extend

number

| Corrected Datapath for Load

IFAD ID/EX EXMEM MEMWE
—
Add
“— -
Shift
left 2
re § _[Rowd
e P Read
a B et e

= Read

-
Instruction rogister 2

— Registors
remory 9 Read
" T
wite
gt
18 [sign- |2
extend
sw
Execution
IF/D ID/EX EX/MEM MEMWE

Add

Address

Instruction
memory

“x £ 2°

| MEM for Store

sw
Memory

e 10/E% EXMEM MEWWE
add
4 —
PC H oad —
jstor 1
= o=
=, Fad .
p—n-| o
Instruction rogistor 2 o
memory — | Registers .4 || -
p—| Virite data2[7| Addrass 2
register N "
wito . v
oz "] 1
Wit
data
i sign- | 3
" extend —
sw
Write-back
IFAD IDEX EXMEM -
—
acd
4 —
e Fead o
or 1 e
_— register e |
Road L.
Instruction register 2
mom: " Registers poag fsad | |
o e =+ Address ——)
wirito an 2 oata "
rogistor o u
s memory =
oata
Wiita
data
1% a2
| —

| Multi-Cycle Pipeline Diagram

Form showing resource usage

Time (in clock cycles)
CC1

Program
execution
order

(in instructions)

Iw $10, 20($1)

sub 811, $2, 3

add $12, $3, 84

I $13, 24($1)

add $14, $5, 86

ccz2

cc3

cc4

CCs

CcCs

cc7

CcCs

CcCo

| Multi-Cycle Pipeline Diagram

Traditional form

Program
execution
order

(in instructions)

Iw $10, 20($1)
sub $11, $2, 3
add $12, $3, $4
Iw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)

cC1 cc2 cc3 CC4 ccs ccé ccr ccs cCco
Instruction | Instruction . Data ‘
fetch decode Execution access Write back
Instruction | Instruction | £ oo | Data {0
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction " Data
fetch decode | EXEcution | less | Write back
Instruction | Instruction . Data N
fetch decode Execution access Write back

Single-Cycle Pipeline Diagram

State of pipeline in a given cycle

| add $14, 85, $6 | Iw $13, 24 (81) | add $12, $3, 54 | sub $11, $2, 53 | Iw §10, 20($1)
| Instruction fetch | Instruction decode [Execution [Memory | Write-back
i IoEx BnEw v
—|
add
4
i = eetr 1 Foad| |
»| Road
Instruction “g‘”"s
egisters. -
P] B —
_—

H
=
wite
rogisior
wite
data
"

Sign-
extend

2

mplified)

PCSIc

Add

4 —

IFI0

ID/EX EXMEM MEMWE

ez

i

Instruction
memory

RegWrits
1

Read
> register 1

Read

1 Instruction

|

register

—| Write
data

Read
data 1

Instruction
(15-0)

Instruction
(20-16)

Branch

MemWiite
L

ALLSR MemtoReg

Read
data

Address

MemRead

Instruction
(15-11)

RegDst

| Pipelined Control

| Control signals derived from instruction
As in single-cycle implementation

IF/ID ID/EX EX/MEM MEM/WB

| Pipelined Control

10

| Data Hazards in ALU Instructions

| Consider this sequence:
sub , $1,%3
and $12,%2,%$5
or $13,%6,
add $14,%2,
sw $15,100(%2)

We can resolve hazards with forwarding
How do we detect when to forward?

| Dependencies & Forwarding

| Time (in clock cycles)
Vaueof CC1 CC2 CC3 C€CC4 C€CC5 CCé6 CC7 CC8 CCo
register $2: 10 10 10 10 10/-20 -20 =20 =20 -20
Program Assume that $2: initial value=10, value after sub=-20

execution
order

(in instructions) M
sub §2, 81, §3 @—H—{n@#}b- DM e
and $12, 52, $5 @—H—E{ﬁi
-
or $13, $6, $2 @—}Lﬁé
[

add $14, $2,$2

sw $15, 100($2)

11

| Detecting the Need to Forward

| Pass register numbers along pipeline
e.g., ID/EX.RegisterRs = register number for Rs
sitting in ID/EX pipeline register
ALU operand register numbers in EX stage
are given by
ID/EX.RegisterRs, ID/EX.RegisterRt
Data hazards when

EX/MEM.RegisterRd = ID/EX.RegisterRs Fwd from
EX/MEM.RegisterRd = ID/EX.RegisterRt EX/MEM

Fwd from
MEM/WB
pipeline re

MEM/WB.RegisterRd = ID/EX.RegisterRt

piers
MEM/WB.RegisterRd = ID/EX.RegisterRs } pipeline re

*Recall for R-type: add rd, rs, rt, i.e. ALU uses values of
rs and rt registers for calculation.

| Detecting the Need to Forward

| But only if forwarding instruction will write
to a register!
EX/MEM.RegWrite, MEM/WB.RegWrite

And only if Rd for that instruction is not
$zero

EX/MEM.RegisterRd # 0,
MEM/WB.RegisterRd # 0

| Forwarding Paths
|

ID/EX EX/MEM MEM/WB
i —~ B R
p—. M
—=u
— Ly X
— .
i \/FcrwardA
Registers [} JYRT] I R BN
'
1 | M
Ly Data
X memory
-
b —t—|
ForwardB
Rs
Rt
] m X EX/MEM.RegisterRd
Rd

u e
— [
{ Forwarding MEM/WB RegisterRd

unit

b. With forwarding

| Forwarding Conditions

| EX hazard
if (EXIMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

if (EXIMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
MEM hazard
if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))

13

Datapath with Forwarding

MEM/WB
WB—

Data
memory

EX/MEM.RegisterRd

ID/EX
m e EX/MEM
Control ’_. M | (WB|
IF/ID U L EX |—- M
— il —~ —
M
—u
—| x
< —|
k=l R
E Registers t ALU |y
w —
I Instruction = | ()
- M
memory
| = (U
X
-
(N
I —
IF/ID.RegisterRs Rs
IF/ID.RegisterRt (AL —
IF/\D.Fieg!stean Rt M
IF/ID.RegisterRd Rd u
— — x
N

MEM/WB.RegisterRd

xc =

| Load-Use Data Hazard

Time (in clock cycles)
CcC1 cc2 ccs CC4 CCs cco cc7

Program
execution
order

(in instructions)

Iw $2, 20($1)

|
y

and $4, 52, §5 :HeEI:
or $8, 52, $6 @—

cCs cCa

Need to stall
for one cycle

add $9, 54, 52 |r H"'_EE

Sit$1, 56, $7 i ’ |r He-gi

14

| Load-Use Hazard Detection

| Check when using instruction is decoded
in ID stage

ALU operand register numbers in ID stage
are given by

IF/ID.RegisterRs, IF/ID.RegisterRt
Load-use hazard when

ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

If detected, stall and insert bubble

| How to Stall the Pipeline

| Force control values in ID/EX register
to O

EX, MEM and WB do nop (no-operation)

Prevent update of PC and IF/ID register
Using instruction is decoded again
Following instruction is fetched again

1-cycle stall allows MEM to read data for 1w
Can subsequently forward to EX stage

15

| Stall/Bubble in the Pipeline

Time (in clock cycles)

[elen]

Program
execution
order

(in instructions)

I $2, 20($1)

and becomes nop

and $4, $2, $5 stalled in ID

or $8, $2, $6 stalled in IF

add $9, $4, $2

CcC3 CC4 CCs

OR IF
repeated

CCo cCc7 cCs

bubble /

CC9 cc 1o
Stall inserted
here

| Datapath with Hazard Detection

PCWrite

PC Instruction L]
memory

IF/DWrite

Hazard

unit J

ID/EX.MemRead

L
V)

[Instruction

M —
u M
X L1 -
0 E M B
e
M
—lu
X
Registers / L,
~
M Data
u memory
(— 4
!
IF/ID.RegisterRs L
IF/ID.RegisterRt (M
IF/ID RegisterRt e, |M
IF/ID. RegisterRd Rd_ :
ID/EX.RegisterRt — o L L
IBs___ 7 Forwarding
Bt unit

16

| Stalls and Performance

Stalls reduce performance

But are required to get correct results
Compiler can arrange code to avoid
hazards and stalls

Requires knowledge of the pipeline structure

| Branch Hazards

| If branch outcome determined in MEM

Time (in clock cycles)

cc1 ccz cca cc4 CCs cce cc7 ccs cco

Z;"‘-"a'“ | Branch to PC+4+7*4=72 |
(l ictions)
44 and $12, 52, §5 [,i'_l.n ’
X Flush these
aBorsia, g6, 52 (-1 instructions
(Set control
52 add $14, $2, $2 @_ values to 0)
72 lw $4, 50($7)
—

17

| Solution to Control Hazard

| Example: branch taken

36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

72: Iw $4, 50($7)
Assume additional hardware to determine
outcome of branch in ID stage
Target address adder: PC+4+4*7=72
Register comparator: e.g. if $1=$3

| Example: Branch Taken

and $12, $2, $5 : beq $1,$3, 7 : sub$10,54,8 ! before<i> | before<2>

IF.Flush

Hazard
detection |
ni

Data

memory J

e

Clock 3

18

| Example: Branch Taken

Iw $4, 50(87)

IF.Flush

Bubble (nop) beq $1,8$3,7

sub $10, .

before<1>

Hazard
|

detection
\ unit j

IFiiD Dﬁ 0
72
lw)

11
xc=

76

Registers

Data
memory

=)

——4

"
Forwarding

unit a7

Clock 4

19

