EECS 2021 Computer Organization

| Chapter 4 Part 3

| The Processor - Pipelining

| Pipeline Summary

Pipelining improves performance by
increasing instruction throughput
Executes multiple instructions in parallel
Each instruction has the same latency
Subject to hazards
Structure, data, control

Instruction set design affects complexity of
pipeline implementation




| MIPS Pipelined Datapath

F: Instruction fetch

1D: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access
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| Pipeline registers

| Need registers between stages
To hold information produced in previous cycle
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| Pipeline Operation

| Cycle-by-cycle flow of instructions through
the pipelined datapath
“Single-clock-cycle” pipeline diagram
Shows pipeline usage in a single cycle
Highlight resources used
c.f. “multi-clock-cycle” diagram
Graph of operation over time
WEe'll look at “single-clock-cycle” diagrams
for load & store

| Single-Clock-Cycle Diagram

| IF for Load and Store




| ID for Load, Store, ...
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| MEM for Load

Memory
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| Corrected Datapath for Load
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| MEM for Store
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| Multi-Cycle Pipeline Diagram

Form showing resource usage

Time (in clock cycles)
CC1

Program
execution
order

(in instructions)

Iw $10, 20($1)

sub 811, $2, 3

add $12, $3, 84

I $13, 24($1)

add $14, $5, 86

ccz2

cc3

cc4

CCs

CcCs

cc7

CcCs

CcCo

| Multi-Cycle Pipeline Diagram

Traditional form

Program
execution
order

(in instructions)

Iw $10, 20($1)
sub $11, $2, 3
add $12, $3, $4
Iw $13, 24($1)

add $14, $5, $6

Time (in clock cycles)

cC1 cc2 cc3 CC4 ccs ccé ccr ccs cCco
Instruction | Instruction . Data ‘
fetch decode Execution access Write back
Instruction | Instruction | £ oo | Data {0
fetch decode access
Instruction | Instruction Execution Data Write back
fetch decode access
Instruction | Instruction " Data
fetch decode | EXEcution | less | Write back
Instruction | Instruction . Data N
fetch decode Execution access Write back




Single-Cycle Pipeline Diagram

State of pipeline in a given cycle

| add $14, 85, $6 | Iw $13, 24 (81) | add $12, $3, 54 | sub $11, $2, 53 | Iw §10, 20($1)
| Instruction fetch | Instruction decode [ Execution [ Memory | Write-back
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| Pipelined Control

| Control signals derived from instruction
As in single-cycle implementation

IF/ID ID/EX EX/MEM MEM/WB

| Pipelined Control
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| Data Hazards in ALU Instructions

| Consider this sequence:
sub , $1,%3
and $12,%2,%$5
or $13,%6,
add $14,%2,
sw  $15,100(%2)

We can resolve hazards with forwarding
How do we detect when to forward?

| Dependencies & Forwarding

| Time (in clock cycles)
Vaueof CC1 CC2 CC3 C€CC4 C€CC5 CCé6 CC7 CC8 CCo
register $2: 10 10 10 10 10/-20 -20 =20 =20 -20
Program Assume that $2: initial value=10, value after sub=-20

execution
order

(in instructions) M
sub §2, 81, §3 @—H—{n@#}b- DM e
and $12, 52, $5 @—H—E{ﬁi
-
or $13, $6, $2 @—}Lﬁé
[

add $14, $2,$2

sw $15, 100($2)
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| Detecting the Need to Forward

| Pass register numbers along pipeline
e.g., ID/EX.RegisterRs = register number for Rs
sitting in ID/EX pipeline register
ALU operand register numbers in EX stage
are given by
ID/EX.RegisterRs, ID/EX.RegisterRt
Data hazards when

EX/MEM.RegisterRd = ID/EX.RegisterRs Fwd from
EX/MEM.RegisterRd = ID/EX.RegisterRt EX/MEM

Fwd from
MEM/WB
pipeline re

MEM/WB.RegisterRd = ID/EX.RegisterRt

piers
MEM/WB.RegisterRd = ID/EX.RegisterRs } pipeline re

*Recall for R-type: add rd, rs, rt, i.e. ALU uses values of
rs and rt registers for calculation.

| Detecting the Need to Forward

| But only if forwarding instruction will write
to a register!
EX/MEM.RegWrite, MEM/WB.RegWrite

And only if Rd for that instruction is not
$zero

EX/MEM.RegisterRd # 0,
MEM/WB.RegisterRd # 0




| Forwarding Paths
|

ID/EX EX/MEM MEM/WB
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| Forwarding Conditions

| EX hazard
if (EXIMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))

if (EXIMEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
MEM hazard
if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
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Datapath with Forwarding
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| Load-Use Data Hazard

Time (in clock cycles)
CcC1 cc2 ccs CC4 CCs cco cc7

Program
execution
order

(in instructions)

Iw $2, 20($1)

|
y

and $4, 52, §5 :HeEI:
or $8, 52, $6 @—

cCs cCa

Need to stall
for one cycle

add $9, 54, 52 |r H"'_EE

Sit$1, 56, $7 i ’ |r He-gi
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| Load-Use Hazard Detection

| Check when using instruction is decoded
in ID stage

ALU operand register numbers in ID stage
are given by

IF/ID.RegisterRs, IF/ID.RegisterRt
Load-use hazard when

ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

If detected, stall and insert bubble

| How to Stall the Pipeline

| Force control values in ID/EX register
to O

EX, MEM and WB do nop (no-operation)

Prevent update of PC and IF/ID register
Using instruction is decoded again
Following instruction is fetched again

1-cycle stall allows MEM to read data for 1w
Can subsequently forward to EX stage
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| Stall/Bubble in the Pipeline

Time (in clock cycles)

[elen]

Program
execution
order

(in instructions)

I $2, 20($1)

and becomes nop

and $4, $2, $5 stalled in ID

or $8, $2, $6 stalled in IF

add $9, $4, $2

CcC3 CC4 CCs

OR IF
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CC9 cc 1o
Stall inserted
here

| Datapath with Hazard Detection

PCWrite

PC Instruction L]
memory

IF/DWrite

Hazard

unit J

ID/EX.MemRead

L
V)

[ Instruction

M —
u M
X L1 -
0 E M B
e
M
—lu
X
Registers / L,
~
M Data
u memory
(— 4
!
IF/ID.RegisterRs L
IF/ID.RegisterRt (M
IF/ID RegisterRt e, |M
IF/ID. RegisterRd Rd_ :
ID/EX.RegisterRt — o L L
IBs___ 7 Forwarding
Bt unit

16



| Stalls and Performance

Stalls reduce performance

But are required to get correct results
Compiler can arrange code to avoid
hazards and stalls

Requires knowledge of the pipeline structure

| Branch Hazards

| If branch outcome determined in MEM

Time (in clock cycles)

cc1 ccz cca cc4 CCs cce cc7 ccs cco

Z;"‘-"a'“ | Branch to PC+4+7*4=72 |
( l ictions)
44 and $12, 52, §5 [,i'_l.n ’
X Flush these
aBorsia, g6, 52 (-1 instructions
(Set control
52 add $14, $2, $2 @_ values to 0)
72 lw $4, 50($7)
—
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| Solution to Control Hazard

| Example: branch taken

36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

72: Iw $4, 50($7)
Assume additional hardware to determine
outcome of branch in ID stage
Target address adder: PC+4+4*7=72
Register comparator: e.g. if $1=$3

| Example: Branch Taken

and $12, $2, $5 : beq $1,$3, 7 : sub$10,54,8 ! before<i> | before<2>

IF.Flush

Hazard
detection |
ni

Data

memory J

e

Clock 3

18



| Example: Branch Taken

Iw $4, 50(87)

IF.Flush

Bubble (nop) beq $1,8$3,7

sub $10, .
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