April 14th , 2015

EECS2210

Time = 25 minutes

Name

Student ID_____

Quiz 3

Question 1 – 7 points

Consider the following circuit. If β =200. Find the voltages at the three transistor terminals and the current in the terminals. As a first approximation, you can neglect the base current compared to the current in the biasing resistors (R_1 and R_2).

Since I_B is very small compared to the current in R_1 and R_2 , I will assume that $I(R_1)=I(R_2)$, so R_1 and R_2 act as a potential divider

$V_B = 15*2/(2+18)=1.5V$

Assuming the transistor is ON, $V_{BE} = 0.7$, so $V_E = V_B - V_{BE}$

$$V_E = 1.5 - 0.7 = 0.8V$$

Since V_E =0.8V, There is a voltage drop of 0.8 across R_E

EECS2210 April 14th , 2015 Quiz 3

 $I_E = 0.8/0.8 = 1mA$

Since β is very high (200), α is close to 1 (0.995) and $I_C \approx I_E = 1$ mA (0.995 to be exact)

IB=IC/β

 $I_B=0.005mA$

By applying KVL on the rightmost loop

 $15=7I_1+7(I_1-I_C)$

 $I_1 = 22/14 = 1.5714 \text{ mA}$

 $V_C = 15 - 1.5714 * 7$ or (1.5714 - 1) * 7 = 4V

EECS2210 April 14th , 2015

Quiz 3

Question 2 - 3 points

In a BJT biased in the active-forward region, the base current i_B =2.8 μ A and the emitter current is i_E =325 μ A.

Find β , α , i_C .

$$I_C = I_E - I_B = 325 - 2.8 = 322.2 \ \mu A$$

$$\beta = I_C/I_B = 322.2/2.8 = 115.0714$$

 $a = \beta/(\beta+1) = 0.991385$