
1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

Test-Driven Development
JUnit
CSE 2311 - Software Development Project

Tuesday, January 20, 2015

2

Unit Testing
•  Testing the internals of a class

•  Black box testing
•  Test public methods

•  Classes are tested in isolation
•  One test class for each application class

3

Test – Driven Development
•  TDD is a software development approach whereby you

write your test cases before you write any
implementation code

•  Tests drive or dictate the code that is developed

•  An indication of “intent”
•  Tests provide a specification of “what” a piece of code

actually does
•  Some might argue that “tests are part of the

documentation”

4

TDD Stages
1.  Write a single test.

2.  Compile it. It should not compile because you have not
written the implementation code

3.  Implement just enough code to get the test to compile

4.  Run the test and see it fail

5.  Implement just enough code to get the test to pass

6.  Run the test and see it pass

7.  Refactor

8.  Repeat

5

JUnit

•  JUnit is a framework for writing and running
tests
•  Written by Erich Gamma (of Design Patterns fame)

and Kent Beck (creator of XP methodology)
•  Uses Java features such as annotations and static

imports

6

Terminology

•  A test fixture sets up the data (both objects and
primitives) that are needed for every test
•  Example: If you are testing code that updates an

employee record, you need an employee record to
test it on

•  A unit test is a test of a single class

•  A test case tests the response of a single
method to a particular set of inputs

•  A test suite is a collection of test cases

•  A test runner is software that runs tests and
reports results

7

Structure of a JUnit test class
•  To test a class named Fraction

•  Create a test class FractionTest

import org.junit.*; !
import static org.junit.Assert.*;!
public class FractionTest!
{!

! !…!
}!

8

Test fixtures
•  Methods annotated with @Before will execute before

every test case

•  Methods annotated with @After will execute after every
test case

@Before!
public void setUp() {…}!
@After!
public void tearDown() {…}!

9

Class Test fixtures
•  Methods annotated with @BeforeClass will execute

once before all test cases

•  Methods annotated with @AfterClass will execute
once after all test cases

•  These are useful if you need to allocate and release
expensive resources once

10

Test cases
•  Methods annotated with @Test are considered to be

test cases

@Test!
public void testadd() {…}!
@Test!
public void testToString() {…}!

11

What JUnit does

•  For each test case t:
•  JUnit executes all @Before methods

•  Their order of execution is not specified
•  JUnit executes t

•  Any exceptions during its execution are
logged

•  JUnit executes all @After methods
•  Their order of execution is not specified

•  A report for all test cases is presented

12

Within a test case

•  Call the methods of the class being tested

•  Assert what the correct result should be with
one of the provided assert methods

•  These steps can be repeated as many times as
necessary

•  An assert method is a JUnit method that
performs a test, and throws an AssertionError if
the test fails
•  JUnit catches these exceptions and shows you the

results

13

List of assert methods 1
•  assertTrue(boolean b)  
assertTrue(String s, boolean b)
•  Throws an AssertionError if b is False

•  The optional message s is included in the Error

•  assertFalse(boolean b)  
assertFalse(String s, boolean b)
•  Throws an AssertionError if b is True
•  All assert methods have an optional message

14

Example: Counter class
•  Consider a trivial “counter” class

•  The constructor creates a counter and sets it to zero

•  The increment method adds one to the counter and
returns the new value

•  The decrement method subtracts one from the counter
and returns the new value

•  An example and the corresponding JUnit test class can
be found on the course website

15

List of assert methods 2
•  assertEquals(Object expected,  
 Object actual)

•  Uses the equals method to compare the two
objects

•  Primitives can be passed as arguments thanks
to autoboxing

•  Casting may be required for primitives

•  There is also a version to compare arrays

16

List of assert methods 3
•  assertSame(Object expected,  
 Object actual)
•  Asserts that two references are

attached to the same object (using ==)

•  assertNotSame(Object expected,  
 Object actual)
•  Asserts that two references are not

attached to the same object

17

List of assert methods 4
•  assertNull(Object object)  

Asserts that a reference is null

•  assertNotNull(Object object)
Asserts that a reference is not null

•  fail()  
Causes the test to fail and throw an AssertionError
•  Useful as a result of a complex test, or when testing

for exceptions

18

Testing for exceptions
•  If a test case is expected to raise an exception, it can be

noted as follows

@Test(expected = Exception.class)!
public void testException() {!
 //Code that should raise an exception!
 fail("Should raise an exception");!
}

19

The assert statement
•  A statement such as

 assert boolean_condition;  
 will also throw an AssertionError if the
boolean_condition is false

•  Can be used instead of the Junit assertTrue method

20

Ignoring test cases
•  Test cases that are not finished yet can be annotated

with @Ignore!

•  JUnit will not execute the test case but will report how
many test cases are being ignored

21

JUnit in Eclipse
•  JUnit can be downloaded from

http://junit.sourceforge.net/

•  If you use Eclipse, as in this course, you do not need to
download anything

•  Eclipse contains wizards to help with the development of
test suites with JUnit

•  JUnit results are presented in an Eclipse window

22

Hello World demo

•  Run Eclipse

•  File -> New -> Project, choose Java Project, and
click Next. Type in a project name, e.g.
ProjectWithJUnit.

•  Click Next

•  Click Create New Source Folder, name it test

•  Click Finish

•  Click Finish

23

Create a class
•  Right-click on ProjectWithJUnit

Select New -> Package
Enter package name, e.g. eecs2311.week3
Click Finish

•  Right-click on eecs2311.week3
Select New -> Class
Enter class name, e.g. HelloWorld
Click Finish

24

Create a class - 2
•  Add a dummy method such as

public String say() { return null; }

•  Right-click in the editor window and select Save

25

Create a test class

•  Right-click on the HelloWorld class
Select New -> Junit Test Case

•  Change the source folder to test as opposed to
src

26

Create a test class

•  Check to create a setup method

•  Click Next

•  Check the checkbox for the say method
•  This will create a stub for a test case for this method

•  Click Finish

•  Click OK to “Add JUnit 4 library to the build
path”

•  The HelloWorldTest class is created

•  The first version of the test suite is ready

27

Run the test class - 1st try
•  Right click on the HelloWorldTest class

•  Select Run as -> JUnit Test

•  The results appear in the left

•  The automatically created test case fails

28

Create a better test case
•  Import the class under test

 import eecs2311.week3.HelloWorld;

•  Declare an attribute of type HelloWorld
HelloWorld hi;

•  The setup method should create a HelloWorld object
hi = new HelloWorld();

•  Modify the testSay method body to
assertEquals("Hello World!",  
 hi.say());

29

Run the test class - 2nd try
•  Save the new version of the test class and re-run

•  This time the test fails due to expected and actual not
being equal

•  The body of the method say has to be modified to
return “Hello World!”;
for the test to pass

30

Create a test suite
•  Right-click on the eecs2311.week3 package in the test

source folder

•  Select New -> Class. Name the class AllTests.

•  Modify the class text so it looks like class AllTests for the
Counter example on the course website

•  Change CounterTest to HelloWorldTest

•  Run with Run -> Run As -> JUnit Test

•  You can easily add more test classes

•  Homework on next slide

31

Homework
•  Each team member must write at least 5 test cases for

one of the classes that you have already developed

•  In the lab on Monday, you must present your test cases
to the TA and demonstrate running them

32

More on TDD
•  Before you write code, think about what it will do.

•  Write a test that will use the methods you haven’t even written
yet.

•  A test is not something you “do”, it is something you “write” and
run once, twice, three times, etc.
•  It is a piece of code
•  Testing is therefore “automated”
•  Repeatedly executed, even after small changes

•  The following TDD slides are based on a slide set by Craig Murphy

33

TDD Stages

Write a test

Compile

Fix compile errors

Run test,
watch it fail

Write code

Run test,
watch it pass

Refactor code
(and test)

34

Why TDD?
•  Programmers dislike testing

•  They will test reasonably thoroughly the first time
•  The second time however, testing is usually less thorough
•  The third time, well..

•  Testing is considered a “boring” task

•  Testing might be the job of another department / person

•  TDD encourages programmers to maintain an exhaustive set of
repeatable tests
•  Tests live alongside the Class/Code Under Test (CUT)
•  With tool support, tests can be run selectively
•  The tests can be run after every single change

35

Summary
•  TDD does not replace traditional testing

•  It defines a proven way that ensures effective unit testing
•  Tests are working examples of how to invoke a piece of

code
•  Essentially provides a working specification for the code

•  No code should go into production unless it has
associated tests
•  Catch bugs before they are shipped to your customer

•  No code without tests

•  Tests determine, or dictate, the code

36

Summary
•  TDD means less time spent in the debugger

•  TDD negates fear
•  Fear makes developers communicate less
•  Fear makes developers avoid repeatedly testing code

•  Afraid of negative feedback

37

Summary
•  TDD promotes the creation of a set of “programmer

tests”
•  Automated tests that are written by the programmer
•  Exhaustive
•  Can be run over and over again

•  TDD allows us to refactor, or change the
implementation of a class, without the fear of breaking it
•  TDD and refactoring go hand-in-hand

•  With care, [some] User Acceptance Tests can be
codified and run as part of the TDD process

38

Resources
•  JUnit: http://junit.sourceforge.net

•  NUnit: http://www.nunit.org

•  CSUnit: http://www.csunit.org

39

XP approach to testing

•  In the Extreme Programming approach
•  Tests are written before the code itself
•  If the code has no automated test cases, it is

assumed not to work
•  A testing framework is used so that automated

testing can be done after every small change to the
code
•  This may be as often as every 5 or 10 minutes

•  If a bug is found after development, a test is created
to keep the bug from coming back

40

XP consequences
•  Fewer bugs

•  More maintainable code

•  The code can be refactored without fear

•  Continuous integration
•  During development, the program always works
•  It may not do everything required, but what it does, it does

right

