

7

• Laplace transform of causal signals simplifies into unilateral Laplace transform.

$$X(s) = L\{x(t)\} = \int_{0^{-}}^{\infty} x(t) e^{-st} dt,$$

15-04-01

x(t)	Laplace Transform $X(s) = \int_{-\infty}^{\infty} x(t)e^{-st} dt$	Region of Convergence (ROC)
$1. x(t) = \delta(t)$	1	Entire s-plane
2. x(t) = u(t)	$\frac{1}{s}$	$\operatorname{Re}\{s\} > 0$
3. $x(t) = u(t) - u(t - a)$	$\frac{1}{s}\left(1-e^{-as}\right)$	$\operatorname{Re}\{s\} > 0$
$4. x(t) = e^{-at} u(t)$	$\frac{1}{a+s}$	$\operatorname{Re}\{s\} > -a$
5. x(t) = t u(t)	$\frac{1}{s^2}$	$\operatorname{Re}\{s\} > 0$
$6. x(t) = t^n u(t)$	<u></u>	$\operatorname{Re}\{s\} > 0$

$f(x(t) = t e^{-at} u(t)$	$\frac{1}{(a+s)^2}$	$\operatorname{Re}\{s\} > -a$
$c(t) = t^n e^{-at} u(t)$	$\frac{n!}{(a+s)^{n+1}}$	$\operatorname{Re}\{s\} > -a$
$x(t) = \cos(\omega_0 t) \ u(t)$	$\frac{s}{\omega_0^2 + s^2}$	$\operatorname{Re}\{s\} > 0$
$x(t) = \sin(\omega_0 t) \ u(t)$	$\frac{\omega_0}{\omega_0^2 + s^2}$	$\operatorname{Re}\{s\} > 0$
$x(t) = \exp(-at)\cos(\omega_0 t) u(t)$	$\frac{a+s}{(a+s)^2+\omega_0^2}$	$\operatorname{Re}\{s\} > -a$
$x(t) = \exp(-at)\sin(\omega_0 t) u(t)$	$\frac{\omega_0}{(a+s)^2+\omega_0^2}$	$\operatorname{Re}\{s\} > -a$

Properties in the time domain	CTFT: $X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$	Laplace Transform $X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$
Linearity: $a_1x_1(t) + a_2x_2(t)$	$a_1 X_1(0) + a_2 X_2(0)$	$a_1 X_1(s) + a_2 X_2(s)$ ROC : at least $R_1 \cap R_2$
Time Scaling: x(at)	$\frac{1}{ a }X(\frac{\omega}{a})$	$\frac{\frac{1}{ a }X(\frac{s}{a})}{\text{with ROC : } aR}$
Time Shifting: $x(t-t_0)$	$e^{-j\omega_0 t}X(\omega)$	$e^{-st_0}X(s)$ with ROC: R
Frequency / s-domain Shifting: $x(t)e^{j\omega_0 t}$ or $x(t)e^{s_0 t}$	$X(\omega - \omega_0)$	$X(s-s_0)$ with ROC: $R + \operatorname{Re}\{s_0\}$
Time Differentiation: dx / dt	$j \omega X(\omega)$	$sX(s) - x(0^{-})$ with ROC : R
Time Integration: $\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{X(\omega)}{j\omega} + \pi X(0)\delta(\omega)$	$\frac{\frac{X(s)}{s}}{\text{with ROC}: R \cap \operatorname{Re}\{s\} > 0,$

Properties of	of Laplace	Transform	(II)
L	L		$\langle \rangle$

Frequency / <i>s</i> -domain Differentiation: $(-t)x(t)$	$-jdX/d\omega$	dX / ds
Duality: $X(t)$	$2\pi x(\omega)$	Not applicable
Time Convolution: $x_1(t) * x_2(t)$	$X_1(\omega)X_2(\omega)$	$\begin{array}{c} X_1(s)X_2(s) \\ \text{ROC includes} R_1 \cap R_2 \end{array}$
Frequency / <i>s</i> -domain Convolution: $x_1(t)x_2(t)$	$\frac{1}{2\pi}X_1(\omega) * X_2(\omega)$	$\frac{\frac{1}{2\pi}X_1(s) * X_2(s)}{\text{ROC includes} R_1 \cap R_2}$
Parsevals Relationship:	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$	Not applicable
Initial value: $x(0^+)$ if it exists	$\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)d\omega$	$\lim_{s \to \infty} sX(s)$ provided $s = \infty$ is included in the ROC of $sX(s)$.
Final value: $x(\infty)$ if it exists	Not applicable	$\lim_{s \to 0} sX(s)$ provided $s = 0$ is included in the ROC of $sX(s)$.
15-04-01		12

Applications of Laplace transform

- Solving Differential Equations
- Laplace analysis of LTIC systems
 - System function (transfer function)
 - Zeros and poles

15-04-01

