EECS2602 Z: Continuous Time Signals and Systems
Instructor: Hui Jiang
Quiz \# 2 (12% of the course) your mark: / 70
Time Allowed: 60 minutes
Name: \qquad
Student ID Number: \qquad York EECS Email: \qquad

1. (12 points) Write TRUE or FALSE for each of the following statements and justify briefly.
3.1 The system $y(t)=|x(t)|$ is invertible. [FALSE]
$y(t)=|x(t)|$ is not one-to-one mapping function
3.2 The system $y(t)=\operatorname{sgn}(x(t))$ is nonlinear. [TRUE]
take one example: $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \rightarrow \mathrm{y}(\mathrm{t})$
take another example: $x^{\prime}(\mathrm{t})=2 \mathrm{u}(\mathrm{t}) \rightarrow \mathrm{y}^{\prime}(\mathrm{t})=\mathrm{y}(\mathrm{t})!=2 \mathrm{y}(\mathrm{t})$
3.3 The system $y(t)=\int_{t-10}^{t}|x(\tau)| d \tau$ is non-causal. [FALSE]
$\mathbf{y}(\mathrm{t})$ only depends on $\mathbf{x}(\mathrm{t})$ from t -10 to t , all of which is history ...
3.4 The system $\frac{d y(t)}{d t}+2 y(t)=3 x(t)$ is always linear. [FALSE
]

It is not linear if it has non-zero initial conditions.
2. (24 marks) The following electrical circuit consists of two resistors R1 and R2, and a capacitor C.
(i) (8 marks) Determine the differential equation relating the input voltage $v(t)$ to the output voltage $y(t)$.
(ii) (6 marks) Determine whether the system is (a) linear; (b) time-invariant; (c) memory less; (d) causal; (e) invertible; and (f) stable.
(iii) (10 marks) Assume the system is initially rest, $\mathrm{R} 1=1, \mathrm{R} 2=2, \mathrm{C}=1$, determine the output signal $y(t)$ when the input $x(t)=\cos (t) \cdot u(t)$.

(i) ${ }^{\text {QR: }} \quad i_{R_{1}}(t)=\frac{y(t)-v(t)}{R_{1}}$
$i_{R_{2}(t)}=\frac{y(t)}{R_{2}}$
$i_{c}(t)=c \frac{d y(t)}{d t}$.
$i_{R_{1}}+i_{R_{2}}+i_{c}=0 \Longrightarrow c \frac{d y(t)}{d t}+\frac{y(t)}{R_{2}}+\frac{y(t)-v(t)}{R_{1}}=0$
$\Rightarrow \frac{d y(t)}{d t}+\frac{R_{1}+R_{2}}{C R_{1} R_{2}} y(t)=\frac{1}{c R_{1}} V(t)$
iii). $R_{1}=1, R_{2}=2, C=1$.
$\Rightarrow \frac{d y(t)}{d t}+\frac{3}{2} y(t)=v(t)$
characteristic equation: $\quad S+\frac{3}{2}=0$ Homogenous component: $\quad S=-\frac{3}{2}$

$$
y_{h}(t)=A \cdot e^{-\frac{3}{2} t}
$$

- particular component.

$$
x(t)=\cos (t) \mu(t) \Longrightarrow y_{p}(t)=c_{1} \sin t+c_{2} \cos t
$$

This page is for Q2.
ii) The system can be either linear or nonlinear, depending on the initial conditions.

The system is time-invariant.
The system has memory.
The system is causal.
The system is not invertible if the initial conditions are not zero
The system is stable

$$
\begin{gathered}
C_{1} \cos t=C_{2} \sin t+\frac{3}{2}\left(C_{1} \sin t+C_{2} \cos t\right) \\
=\cos t \\
\Rightarrow\left\{\begin{array}{l}
C_{1}+\frac{3}{2} c_{2}=1 \\
\frac{3}{2} C_{1}-C_{2}=0
\end{array} \Rightarrow C_{2}=\frac{3}{2} C_{1}\right. \\
\Rightarrow C_{1}+\frac{9}{4} c_{1}=1 \Rightarrow c_{1}=\frac{4}{13} \quad c_{2}=\frac{6}{13} \\
y_{p}(t)=\frac{4}{13} \sin t+\frac{6}{13} \cos t
\end{gathered}
$$

Compleat vesponsens

$$
\begin{aligned}
& y(t)=A \cdot e^{-\frac{3}{2} t}+\frac{4}{13} \sin t+\frac{6}{13} \cos t \\
& y(0)=A+\frac{6}{13}=0 \Rightarrow A=-\frac{6}{13}
\end{aligned}
$$

Finally:

$$
y(t)=\left[-\frac{6}{13} e^{-\frac{3}{2} t}+\frac{4}{13} \sin t+\frac{6}{13} \cos t\right] u(t)
$$

3. (24 marks) Given the following electrical circuit, assume $C=1, R=\frac{1}{2}, L=\frac{1}{2}$,
(i) (8 marks) Determine the differential equation relating the input voltage $v(t)$ to the output voltage $y(t)$.
(ii) (16 marks) Determine the output signal $y(t)$ when we apply the input signal $v(t)=e^{-2 t}$ at the time instance $t=0$, Assume $y\left(0^{-}\right)=5, y^{\prime}\left(0^{-}\right)=-2$.

Qu:

$$
\begin{aligned}
\text { (i) } \begin{aligned}
& i_{R}(t)=\frac{y(t)-v(t)}{R} \\
& i_{c}(t)=c \frac{d y(t)}{d t} \\
& i_{L}(t)=\frac{1}{L} \int_{-\infty}^{t} y(\tau) d \tau \\
& i_{R}+i_{L}+i_{c}=0 \\
& \Rightarrow \frac{y(t)-v(t)}{R}+c \cdot \frac{d y(t)}{d t}+\frac{1}{L} \int_{-\infty}^{t} y(\tau) d \tau=0 \\
& \Rightarrow c \cdot \frac{d^{2} y(t)}{d t^{2}}+\frac{1}{R} \cdot \frac{d y(t)}{d t}+\frac{1}{L} y(t)=\frac{1}{R} \frac{d v(t)}{d t} \\
& \Rightarrow \frac{d^{2} y(t)}{d t^{2}}+\frac{1}{R c} \cdot \frac{d y(t)}{d t}+\frac{1}{L c} y(t)=\frac{1}{R c} \frac{d v(t)}{d t} \\
& c=1, \quad R=\frac{1}{2}, L=\frac{1}{2} \\
& \frac{d^{2} y(t)}{d t^{2}}+2 \frac{d y(t)}{d t}+2 y(t)=2 \frac{d v(t)}{d t} \\
& \underbrace{2}
\end{aligned}
\end{aligned}
$$

ii) homogenous component. chavacteric equation.

$$
\begin{aligned}
& s^{2}+2 s+2=0 \Rightarrow(s+1)^{2}+1=0 \\
& \Rightarrow s=-1 \pm \bar{\prime} \\
& y_{n}(t)=A_{1} e^{-t} \cos t+A_{2} e^{-t} \sin t
\end{aligned}
$$

Particular componet:

$$
\begin{aligned}
& x(t)=-4 e^{-2 t} \Rightarrow y(t)=c e^{-2 t} \\
& 4 c \cdot e^{-2 t}-4 c e^{-2 t}+2 c \cdot e^{-2 t}=-4 e^{-2 t} \\
& c=-2
\end{aligned}
$$

complete response:

$$
\left.\left.\begin{array}{l}
y(t)=A_{1} \cdot e^{-t} \cos t+A_{2} e^{-t} \sin t-2 e^{-2 t} \\
y(0)=A_{1}-2=5 \\
y^{\prime}(t)=-A_{1} \cdot e^{-t} \sin t-A_{1} e^{-t} \cos t+A_{2} e^{-t} \cos t-A_{2} e^{-t} \sin t \\
+4 e^{-2 t}
\end{array}\right] \begin{array}{l}
A_{1}=7 \\
A_{2}=1
\end{array}\right] .
$$

4. (10 marks) Prove: $x(t)=\int_{-\infty}^{+\infty} x(\tau) \cdot \delta(t-\tau) d \tau$.
I) use the property of impulse signals.

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} x(\tau) \cdot \delta(t-\tau) d \tau \\
& =\left.\int_{-\infty}^{+\infty} x(\tau)\right|_{\tau=t} \cdot \delta(t-\tau) d \tau \\
& =x(t) \int_{-\infty}^{+\infty} \delta(t-\tau) d \tau \\
& =x(t)
\end{aligned}
$$

II) use limit to the rectangular approximation.

