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                           Process 

How OS manages CPU usage? 

•  How CPU is used? 
–  Users use CPU to run programs 

•  In a multiprogramming system, a CPU always has several jobs 
running together. 

•  How to define a CPU job? 
–  The important concept: 

PROCESS 

Process 

•  Process is a running program, a program in execution. 
•  Process is a basic unit of CPU activities, a process is a unit of 

work in a multiprogramming system. 
•  Many different processes in a multiprogramming system: 

–  User processes executing user code 
•  Word processor, Web browser, email editor, etc. 

–  System processes executing operating system codes 
•  CPU scheduling  
•  Memory-management 
•  I/O operation 

•  Multiple processes concurrently run in a CPU. 

Process vs. Program Code 
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•  A Process includes: 
–  Text Section: memory segment including program                        

codes. 
–  Data Section: memory segment containing global                         

and static variables. 
–  Stack and Heap: memory segment to save temporary 

data, such as local variable, function parameters,            
return address, ... 

–  Program Counter (PC): the address of the                                          
instruction to be executed next. 

–  All CPU’s Registers 

Process in Memory (I) 

Figure 2.8   Typical Process Implementation
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Process in Memory (II) 

Process Control Block 

Data Structure to represent a Process: 
Process Control Block (PCB)  

•  Process state 
•  Program counter (PC) 
•  CPU registers 
•  CPU scheduling information 
•  Memory-management 

information 
•  I/O status information 
•  Accounting information 

Linux PCB  

struct task_struct { 
    pid_t pid;   /* process identifier */ 
    long state;  /* state of the process */ 
    unsigned int time_slice; /*scheduling info*/ 
    struct task_struct *parent; /* parent process*/ 
    struct list_head children; /* all child processes*/ 
    struct files_struct *files; /* list of open files*/ 
    struct mm_struct *mm; /* memory space of process */ 
    … 
    … 
} ; 

Process States 

•  New: the process is just being created 
•  Running: instructions are being executed by CPU 
•  Waiting: waiting for some event, I/O completion or a signal 
•  Ready: waiting to be assigned to CPU to run 
•  Terminated: it finished execution 

Scheduling Queues (I) 
•  Scheduling Queues: 

–  List of processes competing for the same resource. 

•  Queues is generally implemented as linked lists. 

•  Each item in the linked list is PCB of a process, we extend each 
PCB to include a pointer to point to next PCB in the queue. 

•  In Linux, each queue is a doubly linked list of task_struct. 

•  Examples of scheduling queues: 
–  Ready Queue:  all processes waiting for CPU 
–  Device Queues: all processes waiting for a particular device; 

Each device has its own device queue. 

Scheduling Queues (II) 
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Queuing Diagram CPU Switch from process to process: 
how to use PCB 

Context Switch: example 
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Context Switch 
•  Context Switch: switching the CPU from one process to another. 

–  Saving the state of old process to its PCB. 
–  CPU scheduling: select a new process. 
–  Loading the saved state in its PCB for the new process. 

•  The context of a process is represented by its PCB. 
•  Context-switch time is pure overhead of the system,  typically 

from 1–1000 microseconds, mainly depending on: 
–  Memory speed. 
–  Number of registers. 
–  Existence of special instruction. 
–  The more complex OS, the more to save. 

•  Context switch has become such a performance bottleneck in a 
large multiprogramming system: 

–  New structure to reduce the overhead: THREAD. 

Process Scheduling: Schedulers 
•  The scheduler’s role 

•  CPU scheduler (Short-term scheduler) 
–  Select a process from ready queue to run once CPU is free. 
–  Executed very frequently (once every 100 millisecond). 
–  Must be fast enough for OS efficiency. 

•  Long-term Scheduler (Job scheduler): 
–  Choose a job from job pool to load into memory to start. 
–  Control the degree of multiprogramming – number of process in 

memory. 
–  Select a good mix of I/O-bound processes and CPU-bound 

processes. 
 

Operations on Processes 
(UNIX/Linux as an example) 

•  Process creation 

•  Process termination 

•  Inter-process communication (IPC) 

•  Multiple-process programming in Unix/Linux 
–  Cooperating process tasks. 
–  Important for multicore architecture 

Process Creation(1) 
•  A process can create some new processes via a create-

process system call: 
–  Parent process / children process. 

•  All process in Unix form a tree structure. 

Process Creation(2) 

•  Resource Allocation of child process 
–  The child process get its resource from OS directly. 
–  Constrain to its parent’s resources. 

•  Parent status 
–  The parent continues to execute concurrently with its children. 
–  The parent waits until its children terminate. 

•  Initialization of child process memory space 
–  Child process is a duplicate of its parent process. 
–  Child process has a program loaded into it. 

•  How to pass parameters (initialization data) from parent to child? 

UNIX Example: fork() 

•  In UNIX/Linux, each process is identified by its process number (pid). 
•  In UNIX/Linux, fork() is used to create a new process. 
•  Creating a new process with fork(): 

–  New child process is created by fork(). 
–  Parent process’ address space is copied to new process’ space 

(initially identical content in memory space). 
–  Both child and parent processes continue execution from the 

instruction after fork(). 
–  Return code of fork() is different: in child process, return code is 

zero, in parent process, return code is nonzero (it is the process 
number of the new child process) 

–  If desirable, another system call execlp() can be used by one of 
these two processes to load a new program to replace its original 
memory space. 
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Typical Usage of fork() 
#include <stdio.h> 
void main(int argc, char *argv[ ]) 
{ 
   int pid ; 
 
   /* fork another process */ 
  pid = fork() ; 
 
  if (pid < 0)  {  /* error occurred */ 
     fprintf(stderr, “Fork Failed!\n”) ; 
     exit(-1) ; 
   }  else if (pid == 0)  { /* child process*/ 
     execlp(“/bin/ls”,”ls”,NULL) ; 
  }  else {  /* parent process */ 
     /* parent will wait for the child to complete */ 
     wait(NULL) ; 
     printf (“Child Complete\n”) ; 
     exit(0) ; 
   } 
} 

Process Termination 

•  Normal termination: 
–  Finishes executing its final instruction or call exit() system call. 

•  Abnormal termination:  make system call abort(). 
–  The parent process can cause one of its child processes to 

terminate.  
•  The child uses too much resources. 
•  The task assigned to the child is no longer needed. 
•  If the parent exits, all its children must be terminated in some 

systems. 
•  Process termination: 

–  The process returns data (output) to its parent process. 
•  In UNIX, the terminated child process number is return by 

wait() in parent process.  
–  All its resources are de-allocated by OS. 

Multiple-Process Programming in Unix 
•  Unix system calls for process control: 

–  getpid(): get process ID (pid) of calling process. 

–  fork(): create a new process. 

–  exec(): load a new program to run. 
•  execl(char *pathname, char *arg0, …) ; 
•  execv(char *pathname, char* argv[ ]) ; 
•  execle(), execve(), execlp(), execvp() 

–  wait(), waitpid(): wait child process to terminate. 

–  exit(), abort():  a process terminates. 

Cooperating Processes 
•  Concurrent processes executing in the operating system 

–  Independent: runs alone 
–  Cooperating: it can affect or be affected by other processes 

•  Why cooperating processes? 
–  Information sharing 
–  Computation speedup 
–  Modularity 
–  Convenience 

•  Inter-process communication (IPC) mechanism for cooperating 
processes: 

–  Shared-memory 
–  Message-passing 

IPC Approaches Inter-process Communication (IPC): 
Message Passing 

•  IPC with message passing provides a mechanism to allow 
processes to communicate and to synchronize their actions 
without sharing the same address space. 

•  IPC based on message-passing system: 
–  Processes communication without sharing space. 
–  Communication is done through the passing of messages. 
–  At least two system calls: 

•  send(message) 
•  receive(message) 

–  Message size: fixed vs. variable  
–  Logical communication link: 

•  Direct vs. indirect communication 
•  Blocking vs. non-blocking 
•  Buffering 
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Direct Communication 

•  Each process must explicitly name the recipient or sender of the 
communication. 

–  send(P,message) 
–  Receive(Q,message) 

•  A link is established between each pair of processes 
•  A link is associated with exactly two processes 
•  Asymmetric direct communication: no need for recipient to name 

the sender 
–  send(P,message) 
–  receive(&id,message): id return the sender identity 

•  Disadvantage of direct communication: 
–  Limited modularity due to explicit process naming 

Indirect Communication 

•  The messages are sent to and received from mailbox. 
•  Mailbox is a logical unit where message can be placed or removed by 

processes. (each mailbox has a unique id) 
–  send(A,message): A is mailbox ID 
–  receive(A,message) 

•  A link is established in two processes which share mailbox. 
•  A link may be associated with more than two processes. 
•  A number of different link may exist between each pair of processes. 
•  OS provides some operations (system calls) on mailbox 

–  Create a new mailbox 
–  Send and receive message through the mailbox 
–  Delete a mailbox 

Blocking vs. non-blocking   
in message-passing 

•  Message passing may be either blocking or non-
blocking. 

•  Blocking is considered synchronous. 
•  Non-blocking is considered asynchronous. 
•  send() and receive() primitives may be either blocking 

or non-blocking. 
–  Blocking send 
–  Non-blocking send 
–  Blocking receive 
–  Non-blocking receive 

•  When both the send and receive are blocking, we have 
a rendezvous between the sender and the receiver. 

Buffering in message-passing 

•  The buffering provided by the logical link: 

–  Zero capacity:  the sender must block until the 
recipient receives the message (no buffering). 

–  Bounded capacity: the buffer has finite length. The 
sender doesn’t block unless the buffer is full. 

–  Unbounded capacity: the sender never blocks.   

IPC in UNIX 
•  Signals 

•  Pipes 

•  Named pipe (FIFO) 

•  Message queues 

•  Shared memory 

•  Sockets 

•  others 

Signal function in Unix 
•  Signal is a technique to notify a process that some events have 

occurred. 
•  The process has three choices to deal with the signal: 

–  Ignore the signal 
–  Let the default action occur. 
–  Call a particular function when the signals occurs. 

•  signal() function: change the action function for a signal 

•  kill() function: send a signal to another process 

#include <signal.h> 

void (*signal(int signo, void (*func) (int )   )  ;  

#include <sys/types.h> 

#include <signal.h> 

int kill (int pid, int signo) ; 
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Unix Signals Example: signal in UNIX 
#include <signal.h> 
 
static void sig_int(int) ; 
 
int main() { 
 
    if(signal(SIGINT,sig_int)==SIG_ERR) 
       err_sys(“signal error”) ; 
    
   sleep(100) ; 
} 
 
void sig_int(int signo) 
{ 
   printf(”Interrupt\n”) ; 
}  
 

•  Event SIGINT:  type the 
interrupt key (Ctrl+C)  

•  The default action is to 
terminate the process. 

•  Now we change the default 
action into printing a 
message to screen. 

Unix Pipe 
•  Half-duplex; only between parent and child processes. 

•  Creating a pipe: 
–  Call pipe();  
–  Then call fork(); 
–  Close some ends to be a half-duplex pipe: close(). 

•  Communicate with a pipe: 
–  Use read() and write(). 

#include <unistd.h> 
 
int pipe( int filedes[2] ) ; 

Unix pipe: example 

fd[0] fd[1] 

pipe 

kernel 

parent 

fd[0] fd[1] 

child 

fd[0] fd[1] 

pipe 

user process 

Unix Pipe: example 
int main() { 
 
   int n, fd[2] ; 
   int  pid ; 
   char  line[200] ; 
 
  if( pipe(fd) < 0 )   err_sys(“pipe error”) ; 
 
  if ( (pid = fork()) < 0 ) err_sys(“fork error”) ; 
  else if ( pid > 0 )  {   
      close(fd[0]) ;  
      write(fd[1], “hello word\n”, 12) ; 
 } else  { 
   close(fd[1]) ; 
   n = read(fd[0], line, 200) ; 
   write(STDOUT_FILENO, line, n) ; 
} 
 exit(0) ; 
} 

OS Global Control Structures 

•  Tables are constructed for each entity that operating system 
manages. 

 
–  Process table:  PCBs and process images. 

–  Memory table: Allocation of main memory to processes; 
                   Protection attributes for access to shared memory regions. 
 

–  File table:  all opened files; location on hardware; current status. 

–  I/O table:  all I/O devices being used; status of I/O operations. 

–  Scheduling queues. 
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