
Prepared by Prof. Hui Jiang 15-01-21

Dept. of EECS, York Univ. 1

EECS3221.3
Operating System Fundamentals

Prof. Hui Jiang
Dept of Electrical Engineering and Computer

Science, York University

No.2

 Process

How OS manages CPU usage?

•  How CPU is used?
–  Users use CPU to run programs

•  In a multiprogramming system, a CPU always has several jobs
running together.

•  How to define a CPU job?
–  The important concept:

PROCESS

Process

•  Process is a running program, a program in execution.
•  Process is a basic unit of CPU activities, a process is a unit of

work in a multiprogramming system.
•  Many different processes in a multiprogramming system:

–  User processes executing user code
•  Word processor, Web browser, email editor, etc.

–  System processes executing operating system codes
•  CPU scheduling
•  Memory-management
•  I/O operation

•  Multiple processes concurrently run in a CPU.

Process vs. Program Code

…

Mov AX, 0x10

Mov BX, CX

Push CX

Mov CX,DX

OUT 0x11,CX

POP CX

…

Program code

Memory

Code
PC CPU

Registers

Stack &
Heap

Process

Process

•  A Process includes:
–  Text Section: memory segment including program

codes.
–  Data Section: memory segment containing global

and static variables.
–  Stack and Heap: memory segment to save temporary

data, such as local variable, function parameters,
return address, ...

–  Program Counter (PC): the address of the
instruction to be executed next.

–  All CPU’s Registers

Process in Memory (I)

Figure 2.8 Typical Process Implementation

Context

Data

Program
(code)

Context

Data

i

Process index

P C

Base
Limit

Other
registers

i

b
h

j

b

hProcess
B

Process
A

Main
Memory

Processor
Registers

Process
list

Program
(code)

Prepared by Prof. Hui Jiang 15-01-21

Dept. of EECS, York Univ. 2

Process in Memory (II)

Process Control Block

Data Structure to represent a Process:
Process Control Block (PCB)

•  Process state
•  Program counter (PC)
•  CPU registers
•  CPU scheduling information
•  Memory-management

information
•  I/O status information
•  Accounting information

Linux PCB

struct task_struct {
 pid_t pid; /* process identifier */
 long state; /* state of the process */
 unsigned int time_slice; /*scheduling info*/
 struct task_struct *parent; /* parent process*/
 struct list_head children; /* all child processes*/
 struct files_struct *files; /* list of open files*/
 struct mm_struct *mm; /* memory space of process */
 …
 …
} ;

Process States

•  New: the process is just being created
•  Running: instructions are being executed by CPU
•  Waiting: waiting for some event, I/O completion or a signal
•  Ready: waiting to be assigned to CPU to run
•  Terminated: it finished execution

Scheduling Queues (I)
•  Scheduling Queues:

–  List of processes competing for the same resource.

•  Queues is generally implemented as linked lists.

•  Each item in the linked list is PCB of a process, we extend each
PCB to include a pointer to point to next PCB in the queue.

•  In Linux, each queue is a doubly linked list of task_struct.

•  Examples of scheduling queues:
–  Ready Queue: all processes waiting for CPU
–  Device Queues: all processes waiting for a particular device;

Each device has its own device queue.

Scheduling Queues (II)

Prepared by Prof. Hui Jiang 15-01-21

Dept. of EECS, York Univ. 3

Queuing Diagram CPU Switch from process to process:
how to use PCB

Context Switch: example
Main MemoryAddress

Dispatcher

Process A

Process B

Process C

Program Counter
0

100

5000

8000

8000

12000

Figure 3.2 Snapshot of Example Execution (Figure 3.4)
at Instruction Cycle 13

Trace of Processes

Trace of Processes Process State

waiting

OS kernel

Prepared by Prof. Hui Jiang 15-01-21

Dept. of EECS, York Univ. 4

Context Switch
•  Context Switch: switching the CPU from one process to another.

–  Saving the state of old process to its PCB.
–  CPU scheduling: select a new process.
–  Loading the saved state in its PCB for the new process.

•  The context of a process is represented by its PCB.
•  Context-switch time is pure overhead of the system, typically

from 1–1000 microseconds, mainly depending on:
–  Memory speed.
–  Number of registers.
–  Existence of special instruction.
–  The more complex OS, the more to save.

•  Context switch has become such a performance bottleneck in a
large multiprogramming system:

–  New structure to reduce the overhead: THREAD.

Process Scheduling: Schedulers
•  The scheduler’s role

•  CPU scheduler (Short-term scheduler)
–  Select a process from ready queue to run once CPU is free.
–  Executed very frequently (once every 100 millisecond).
–  Must be fast enough for OS efficiency.

•  Long-term Scheduler (Job scheduler):
–  Choose a job from job pool to load into memory to start.
–  Control the degree of multiprogramming – number of process in

memory.
–  Select a good mix of I/O-bound processes and CPU-bound

processes.

Operations on Processes
(UNIX/Linux as an example)

•  Process creation

•  Process termination

•  Inter-process communication (IPC)

•  Multiple-process programming in Unix/Linux
–  Cooperating process tasks.
–  Important for multicore architecture

Process Creation(1)
•  A process can create some new processes via a create-

process system call:
–  Parent process / children process.

•  All process in Unix form a tree structure.

Process Creation(2)

•  Resource Allocation of child process
–  The child process get its resource from OS directly.
–  Constrain to its parent’s resources.

•  Parent status
–  The parent continues to execute concurrently with its children.
–  The parent waits until its children terminate.

•  Initialization of child process memory space
–  Child process is a duplicate of its parent process.
–  Child process has a program loaded into it.

•  How to pass parameters (initialization data) from parent to child?

UNIX Example: fork()

•  In UNIX/Linux, each process is identified by its process number (pid).
•  In UNIX/Linux, fork() is used to create a new process.
•  Creating a new process with fork():

–  New child process is created by fork().
–  Parent process’ address space is copied to new process’ space

(initially identical content in memory space).
–  Both child and parent processes continue execution from the

instruction after fork().
–  Return code of fork() is different: in child process, return code is

zero, in parent process, return code is nonzero (it is the process
number of the new child process)

–  If desirable, another system call execlp() can be used by one of
these two processes to load a new program to replace its original
memory space.

Prepared by Prof. Hui Jiang 15-01-21

Dept. of EECS, York Univ. 5

Typical Usage of fork()
#include <stdio.h>
void main(int argc, char *argv[])
{
 int pid ;

 /* fork another process */
 pid = fork() ;

 if (pid < 0) { /* error occurred */
 fprintf(stderr, “Fork Failed!\n”) ;
 exit(-1) ;
 } else if (pid == 0) { /* child process*/
 execlp(“/bin/ls”,”ls”,NULL) ;
 } else { /* parent process */
 /* parent will wait for the child to complete */
 wait(NULL) ;
 printf (“Child Complete\n”) ;
 exit(0) ;
 }
}

Process Termination

•  Normal termination:
–  Finishes executing its final instruction or call exit() system call.

•  Abnormal termination: make system call abort().
–  The parent process can cause one of its child processes to

terminate.
•  The child uses too much resources.
•  The task assigned to the child is no longer needed.
•  If the parent exits, all its children must be terminated in some

systems.
•  Process termination:

–  The process returns data (output) to its parent process.
•  In UNIX, the terminated child process number is return by

wait() in parent process.
–  All its resources are de-allocated by OS.

Multiple-Process Programming in Unix
•  Unix system calls for process control:

–  getpid(): get process ID (pid) of calling process.

–  fork(): create a new process.

–  exec(): load a new program to run.
•  execl(char *pathname, char *arg0, …) ;
•  execv(char *pathname, char* argv[]) ;
•  execle(), execve(), execlp(), execvp()

–  wait(), waitpid(): wait child process to terminate.

–  exit(), abort(): a process terminates.

Cooperating Processes
•  Concurrent processes executing in the operating system

–  Independent: runs alone
–  Cooperating: it can affect or be affected by other processes

•  Why cooperating processes?
–  Information sharing
–  Computation speedup
–  Modularity
–  Convenience

•  Inter-process communication (IPC) mechanism for cooperating
processes:

–  Shared-memory
–  Message-passing

IPC Approaches Inter-process Communication (IPC):
Message Passing

•  IPC with message passing provides a mechanism to allow
processes to communicate and to synchronize their actions
without sharing the same address space.

•  IPC based on message-passing system:
–  Processes communication without sharing space.
–  Communication is done through the passing of messages.
–  At least two system calls:

•  send(message)
•  receive(message)

–  Message size: fixed vs. variable
–  Logical communication link:

•  Direct vs. indirect communication
•  Blocking vs. non-blocking
•  Buffering

Prepared by Prof. Hui Jiang 15-01-21

Dept. of EECS, York Univ. 6

Direct Communication

•  Each process must explicitly name the recipient or sender of the
communication.

–  send(P,message)
–  Receive(Q,message)

•  A link is established between each pair of processes
•  A link is associated with exactly two processes
•  Asymmetric direct communication: no need for recipient to name

the sender
–  send(P,message)
–  receive(&id,message): id return the sender identity

•  Disadvantage of direct communication:
–  Limited modularity due to explicit process naming

Indirect Communication

•  The messages are sent to and received from mailbox.
•  Mailbox is a logical unit where message can be placed or removed by

processes. (each mailbox has a unique id)
–  send(A,message): A is mailbox ID
–  receive(A,message)

•  A link is established in two processes which share mailbox.
•  A link may be associated with more than two processes.
•  A number of different link may exist between each pair of processes.
•  OS provides some operations (system calls) on mailbox

–  Create a new mailbox
–  Send and receive message through the mailbox
–  Delete a mailbox

Blocking vs. non-blocking
in message-passing

•  Message passing may be either blocking or non-
blocking.

•  Blocking is considered synchronous.
•  Non-blocking is considered asynchronous.
•  send() and receive() primitives may be either blocking

or non-blocking.
–  Blocking send
–  Non-blocking send
–  Blocking receive
–  Non-blocking receive

•  When both the send and receive are blocking, we have
a rendezvous between the sender and the receiver.

Buffering in message-passing

•  The buffering provided by the logical link:

–  Zero capacity: the sender must block until the
recipient receives the message (no buffering).

–  Bounded capacity: the buffer has finite length. The
sender doesn’t block unless the buffer is full.

–  Unbounded capacity: the sender never blocks.

IPC in UNIX
•  Signals

•  Pipes

•  Named pipe (FIFO)

•  Message queues

•  Shared memory

•  Sockets

•  others

Signal function in Unix
•  Signal is a technique to notify a process that some events have

occurred.
•  The process has three choices to deal with the signal:

–  Ignore the signal
–  Let the default action occur.
–  Call a particular function when the signals occurs.

•  signal() function: change the action function for a signal

•  kill() function: send a signal to another process

#include <signal.h>

void (*signal(int signo, void (*func) (int)) ;

#include <sys/types.h>

#include <signal.h>

int kill (int pid, int signo) ;

Prepared by Prof. Hui Jiang 15-01-21

Dept. of EECS, York Univ. 7

Unix Signals Example: signal in UNIX
#include <signal.h>

static void sig_int(int) ;

int main() {

 if(signal(SIGINT,sig_int)==SIG_ERR)
 err_sys(“signal error”) ;

 sleep(100) ;
}

void sig_int(int signo)
{
 printf(”Interrupt\n”) ;
}

•  Event SIGINT: type the
interrupt key (Ctrl+C)

•  The default action is to
terminate the process.

•  Now we change the default
action into printing a
message to screen.

Unix Pipe
•  Half-duplex; only between parent and child processes.

•  Creating a pipe:
–  Call pipe();
–  Then call fork();
–  Close some ends to be a half-duplex pipe: close().

•  Communicate with a pipe:
–  Use read() and write().

#include <unistd.h>

int pipe(int filedes[2]) ;

Unix pipe: example

fd[0] fd[1]

pipe

kernel

parent

fd[0] fd[1]

child

fd[0] fd[1]

pipe

user process

Unix Pipe: example
int main() {

 int n, fd[2] ;
 int pid ;
 char line[200] ;

 if(pipe(fd) < 0) err_sys(“pipe error”) ;

 if ((pid = fork()) < 0) err_sys(“fork error”) ;
 else if (pid > 0) {
 close(fd[0]) ;
 write(fd[1], “hello word\n”, 12) ;
 } else {
 close(fd[1]) ;
 n = read(fd[0], line, 200) ;
 write(STDOUT_FILENO, line, n) ;
}
 exit(0) ;
}

OS Global Control Structures

•  Tables are constructed for each entity that operating system
manages.

–  Process table: PCBs and process images.

–  Memory table: Allocation of main memory to processes;
 Protection attributes for access to shared memory regions.

–  File table: all opened files; location on hardware; current status.

–  I/O table: all I/O devices being used; status of I/O operations.

–  Scheduling queues.

Prepared by Prof. Hui Jiang 15-01-21

Dept. of EECS, York Univ. 8

Memory

Devices

Files

Processes

Process 1

Memory Tables

Process
Image

Process
1

Process
Image

Process
n

I/O Tables

File Tables

Figure 3.11 General Structure of Operating System Control Tables

Primary Process Table

Process 2

Process 3

Process n

Operating System Control
Structures

