EECS 3221.3
Operating System Fundamentals

No.6

Process Synchronization(2)

Prof. Hui Jiang

Dept of Electrical Engineering and Computer
Science, York University

Semaphores

* Problems with the software solutions.
— Complicated programming, not flexible to use.

— Not easy to generalize to more complex synchronization
problems.

« Semaphore (a.k.a. lock): an easy-to-use synchronization tool
— An integer variable S
- wait(S) {
while (S<=0) ;
S--;
}
— signal(S) {
S++;
}

Semaphore usage (1):
the n-process critical-section problem

* The n prc share a phore,
Semaphore mutex ; // mutex is initialized to 1.

Process Pi |do{
wait(mutex);

critical section of Pi
signal(mutex);

remainder section of Pi

} while (1);

Semaphore usage (2):
as a General Synchronization Tool

* Execute B in P; only after A executed in P;
» Use semaphore flag initialized to 0

Pi Pj

A wait (flag) ;
signal (flag) ; B

Spinlock vs. Sleeping Lock

« Previous definition of semaphore requires busy waiting.
— ltis called spinlock.

— spinlock does not need context switch, but waste CPU cycles
in a continuous loop.

— spinlock is OK only for lock waiting is very short.
« Semaphore without busy-waiting, called sleeping lock:

— In defining wait(), rather than busy-waiting, the process makes
system calls to block itself and switch to waiting state, and
put the process to a waiting queue associated with the
semaphore. The control is transferred to CPU scheduler.

— In defining signal(), the process makes system calls to pick a
process in the waiting queue of the semaphore, wake it up by
moving it to the ready queue to wait for CPU scheduling.

— Sleeping Lock is good only for long waiting.

Spinlock Implementation(1)

« In uni-processor machine, disabling interrupt before modifying

semaphore.
wait(S) {
do {
signal(S) {
if($>0) {
- S+t
return ;
return ;
} while(1) ; }
}

Spinlock Implementation(1)

. ficahli

* In uni-pr T g interrupt before modifying

semaphore.

Spinlock Implementation(2)

In multi-processor machine, inhibiting interrupt of all
processors is not easy and efficient.

Use software solution to critical-section problems
— e.g., bakery algorithm.
— Treat wait() and signal() as critical sections.

Or use hardware support if available:
— TestAndSet() or Swap()

Example: implement spinlock among two processes.
— Use Peterson’s algorithm for protection.
— Shared data:

Semaphore S ; Initially S=1

boolean flag[2]; initially flag [0] = flag [1] = false.
int turn; initially turn = 0 or 1.

Spinlock Implementation(3)

Spinlock Implementation(2)

* In multi-processor machine, inhibiting interrupt of all
processors is neither easy nor efficient.

+ Use software solution to critical-section problems
— e.g., bakery algorithm.
— Treat wait() and signal() as critical sections.

« Or use hardware support if available:

— TestAndSet() or Swap()

- E ple: impl 1t spinlock betv 1 N pr
— Use Bakery algorithm for protection.
— Shared data:

Semaphore S ; Initially S=1

boolean choosing[N]; (Initially false)
int number[N]; (Initially 0)

pinlock Implementation(3)

Sleeping Lock (I)

« Define a sleeping lock as a structure:
typedef struct {
int value; //Initialized to 1

struct process *L;
} semaphore;

« Assume two system calls:
— block() suspends the process that invokes it.
— wakeup(P) resumes the execution of a blocked process P.

« Equally applicable to multiple threads in one process.

Sleeping Lock (II)

+ Semaphore operations now defined as:
wait(S):
S.value--;
if (S.value < 0) {

add this process to S.L;
block();

}

signal(S):
S.value++;
if (S.value <= 0) {
remove a process P from S.L;
wakeup(P);
}

Two Types of Semaphores:
Binary vs. Counting

Binary semaphore (a.k.a. mutex lock) — integer value
can range only between 0 and 1; simpler to implement
by hardware.

Counting semaphore — integer value can range over an
unrestricted domain.

We can implement a counting semaphore S by using
two binary semaphore.

Binary semaphore is normally used as mutex lock.

Counting semaphore can be used as shared counter,
load controller, etc...

Implementing counting semaphore
with two Binary Semaphores

» Data structures:
binary-semaphore S1, S2;

int C:
« Initialization:

S1=1

S2=0

C =initial value of semaphore S

Implementing S

* wait(S) operation:
wait_binary(S1);

C-;

if(C<0){
signal_binary(S1);
wait_binary(S2);

}

signal_binary(S1);

« signal(S) operation:
wait_binary(S1);
C ++;
if(C<=0)
signal_binary(S2);
else
signal_binary(S1);

Classical Synchronization Problems

* The Bounded-Buffer P-C Problem
* The Readers-Writers Problem

* The Dining-Philosophers Problem

Bounded-Buffer P-C Problem

» A producer produces some data for a consumer to
consume. They share a bounded-buffer for data
transferring.

» Shared memory:
A buffer to hold at most n items
» Shared data (three semaphores)

Semaphore filled, empty; /*counting®
Semaphore mutex; /* binary */

Initially:

filled = 0, empty = n, mutex = 1

Bounded-Buffer Problem:
Producer Process

Bounded-Buffer Problem:
Consumer Process

The Readers-Writers Problem

+ Many processes concurrently access a data object
— Readers: only read the data.
— Writers: update and may write the data object.

« Only writer needs exclusive access of the data.

* The first readers-writers problem:

— Unless a writer has already obtained permission to use the
shared data, readers are al 1

y d to data.
— May starve a writer.

« The second readers-writer problem:
— Once a writer is ready, the writer performs its write as soon
as possible.
— May starve a reader.

The 1st Readers-Writers Problem

+ Use semaphore to implement 15t readers-writer problem
 Shared data:

int readcount = 0; Il keep track the number of readers
Il accessing the data object

Semaphore mutex = 1; I/ mutually exclusive access to
Il readcount among readers

Semaphore wrt = 1; [/ mutual exclusion to the data object
Il used by every writer

llalso set by the 15t reader to read the data
Il and clear by the last reader to finish reading

The 1st Readers-Writers Problem

Reader Process

Writer Process

The Dining-Philosophers Problem

Y

Five philosophers are
thinking or eating
Using only five
chopsticks

When thinking, no need
for chopsticks.

When eating, need two
closest chopsticks.
Can pick up only one
chopsticks

Can not get the one
already in the hand of a
neighbor.

.

.

The Dining-Philosophers Problem:
Semaphore Solution

* Represent each chopstick with a semaphore
Semaphore chopstick[5]; I/ Initialized to 1

do{
wait(chopstick[i]) ;
wait(chopstick[(i+1) % 5]) ;

Philosopher i
(i=0,1,2,3,4)

eat

signal(chopstickli]);
signal(chopstick[(i+1) % 5]);

think

} wi;;l;e 1);

Incorrect Semaphore Usage

Mistake 1: Mistake 2: Mistake 3: Mistake 4:
signal(mutex) ; wait(mutex) ; wait(mutex) ; a'ritical

e e e section
Critical Critical Critical

Secti Secti Section signal(mutex) ;
wait(mutex) ; wait(mutex) ;

Starvation and Deadlock

« Starvation - infinite blocking. A process may never be
removed from the semaphore queue in which it is
suspended.

Deadlock — two or more processes are waiting infinitely for
an event that can be caused by only one of the waiting

processes.
« Let S and Q be two semaphores initialized to 1
Py P,
wait(S); wait(Q);
wait(Q); wait(S);
signal(S); signal(Q);
signal(Q) signal(S);

Why not?

double rqg_lock(struct runqueue *rql,
struct runqueue *rqg2)

{
spin_lock (&rgl->lock) ;
spin_lock (&rg2->lock) ;

struct runqueue *RdQ, *DevQl, *DevQ2, ..

Pl P2

double rg lock(DevQl,RdQ) ;

double_rqg_ lock (RdQ,DevQl) ;

double_rq_lock()
in Linux Kernel

double_rqg lock(struct runqueue *rql,
struct runqueue *rqg2)

{
if (rql == rqg2)
spinlock (&rgl->lock);
else {
if (rgl < rqg2) {
spin_lock(&rql->lock);
spin_lock(&rg2->lock);
} else {
spin_lock (&rg2->lock);
spin_lock (&rgl->lock);
}
}

double_rqg_unlock()
in Linux Kernel

double_rqg unlock(struct runqueue *rql,
struct runqueue *rqg2)

{
spin_unlock (&rgl->lock) ;
if (rgl != rqg2)
spin_unlock (&rg2->lock) ;

Pthread Semaphore

+ Pthread semaphores for multi-threaded
programming in Unix/Linux:

— Pthread Mutex Lock
(binary semaphore)

— Pthread Semaphore
(general counting semaphore)

Pthread Mutex Lock

#include <pthread.h>

I*declare a mutex variable*/

pthread_mutex_t mutex ;

I* create a mutex lock */

pthread_mutex_init (&mutex, NULL) ;

I* acquire the mutex lock */

pthread_mutex_lock(&mutex) ;

I* release the mutex lock */

pthread_mutex_unlock(&mutex) ;

Using Pthread Mutex Locks

» Use mutex locks to solve critical section problems:

#include <pthread.h>

pthread mutex t mutex ;

pthread mutex init(&mutex, NULL) ;
pthread mutex lock (&mutex) ;
/*** critical section ***x/

pthread mutex unlock (&mutex) ;

Pthread Semaphores

#include <semaphore.h>

I*declare a pthread semaphore*/

sem_t sem ;

I* create and initialize a semaphore */

sem_init (&sem, flag, initial_value) ;

I* wait() operation */

sem_wait(&sem) ;

I* signal() operation */

sem_post(&sem) ;

Using Pthread semaphore

+ Using Pthread semaphores for counters shared by multiple threads:

#include <semaphore.h>

sem_t counter ;

sem_init(&counter, 0, 0) ; /* initially 0 */
/* increment */

sem_post (&counter) ;

sem_wait(&counter) ; /* decrement */

volatile in multithread program

- In multithread programming, a shared global variable
must be declared as volatile to avoid compiler’s
optimization which may cause conflicts:

volatile int data ;

volatile char buffer[100] ;

Process Synchronization nanosleep()
for multiple processes in Unix

- In Unix, a shared global variable must be created with the following #include <time.h>
systems calls:

int nanosleep (const struct timespec *req,

#include <sys/shm.h> struct timespec *rem);
int shmget(key_t key, size_t size, int shmflg); struct timespec
{
i . fx *
void *shmat(int shmid, const void *shmaddr, int shmflg); tlme_t tv_sec’ /* seconds */

long tv_nsec; /* nanoseconds 0-999,999,999 */
int shmdt(const void *shmaddr) ; bi

int shmctl (int shmid, int cmd, struct shmid_ds *buf);

