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DSP Algorithms 
n  DSP algorithms are described by nonterminating 

programs, which execute the same code 
repetitively. 

	  	  	  	  Y(n)=a*x(n)+b*x(n-‐1)+c*x(n-‐2),	  for	  n=1	  to	  ∞ 
n  An iteration – execution of all the computations in 

the algorithm once. 
n  Critical path – the longest path between inputs 

and outputs in combinational logic circuit. 
n  Latency – the difference between the time an 

output is generated and the time at which its 
corresponding input was received by the system. 

Representation of DSP Algorithms 

n  Graphical representations are efficient for 
investigating and analyzing data flow 
properties of DSP algorithms. 

n  Good for map DSP algorithms to hardware 
implementations 

n  Four methods for graphical representation 
n  Block diagram 
n  Signal-flow graph (SFG) 
n  Data-flow graph (DFG) 
n  Dependence graph (DG) 
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Block Diagram 
n  Consists of functional blocks connected with 

directed edges, which represent data flow from 
its input block to its output block. 

n  Edges may or may not contain delay elements. 
n  Example 
	  	  	  	  Y(n)=a*x(n)+b*x(n-‐1)+c*x(n-‐2)	  

Signal-Flow Graph (SFG) 
n  SFG: a collection of nodes and directed edges 

n  Nodes: represent computations and/or task, sum all 
incoming signals 

n  Directed edge (j,k): denotes a linear transformation 
from the input signal at node j to the output signal at 
node k. 

n  Linear SFGs can be transformed into different forms 
without changing the system functions. 

n  Usually used for linear time-invariant DSP systems 
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Data-Flow Graph (DFG) (1) 
n  DFG: nodes represent computation(or functions or 

subtasks), while the directed edges represent data paths 
(data communications between nodes), each edge has a 
nonnegative number of delays associated with it. 

n  DFG: captures the data-driven property of DSP 
algorithm: any node can fire (perform its computation) 
whenever all its input data are available. 

A0 A1 

DFG Constraints(2) 

n  Each edge describes a precedence 
constraint between two nodes 
n  Intra-iteration precedence constraint: if the 

edge has zero delays. 
n  Inter-iteration precedence constraint: if the 

edge has one or more delays. 
n  DFGs and Block Diagrams can be used to 

describe  both linear single-rate and 
nonlinear multi-rate DSP systems. 
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Examples of DFG 
n  Nodes are complex blocks (coarse-grain) 

n  Nodes can describe expanders/decimators 
in multi-rate DFGs 

Example of DFG(2) 
n  y(n)=a*y(n-1)+x(x) 

DFG Synchronous DFG 
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Synchronous DFG (SDFG) 
n  SDFG is a special case of data-flow graph. 
n  In SDFG, the number of data samples produced 

or consumed are specified a priori. 
n  For example, node B needs 1 data unit to fire 

and produces one data unit after completion. 
n  In multi-rate systems, that number could be 

greater than 1. 
n  By using node replication, a multi-rate system 

could be changed to a single-rate system. 

Dependence Graph (DG) 
n  DG is a directed graph that shows the 

dependence of the computations in an 
algorithm 

n  The nodes represent computations and the 
edges represent precedence constraints 
among nodes. 

n  The DFG nodes are executed repetitively, 
while nodes in a dependence graph 
contains computations for all iterations. 

n  DFs are used for systolic array design. 
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Dependence Graph 
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Iteration bound 
n  Iteration: execution of all computations in 

the algorithm once. 
n  Iteration period: the time required to 

perform the iteration (sample period). 
n  Feedback imposes an inherent bound on 

the iteration period, 
n  Iteration bound is a characteristic of the 

representation of an algorithm in the form 
of DFG. Different representations of the 
same algorithm may lead to different 
iteration bounds. 

Iteration bound 
n  The feedback imposes an inherent 

fundamental lower bound on the 
achievable iteration period. 

n  It is not possible to achieve iteration period 
less than the iteration bound even if we 
have an infinite processing power. 
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Determine Iteration Bound 
n  Edges describe a precedence constraints 

n  intra-iteration denotes  “→” 
n  inter-iteration denotes “⇒” 

n  Critical path is the path with the longest 
computation time among all paths that contains 
no delay. 

n  A non-recursive DFG contains no loops 
n  A recursive DFG contains at least one loop. 
n  A loop is a directed path that begins and ends at 

the same node.  
 
 

Precedence Constraints 

n  The edge from A to B enforces the intra-iteration 
precedence, the kth iteration of A must be done 
before the kth iteration of B. AK → BK  

n  The edge from B to A enforces the inter-iteration 
precedence. The kth iteration of B must be executed 
before the (k+1)th iteration of A. BK ⇒ AK+1  

n  A0 → B0 ⇒ A1 → B1 ⇒ A2 → B2 …. 
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Critical Path 
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Critical path 6->3->2->1 = 5 unit of time (u.t.) 

5->3->2->1 5 u.t. 

Critical Path A->B 6 u.t. 

Recursive DFG Non-recursive DFG 

Determine Iteration Bound 
n  For recursive DFG, there is a fundamental lower 

bound “iteration bound” T∞  
n  Loop bound of the l-th loop = tl/wl  

n  tl is loop computation time,  
n  wl is the delay in the loop. 

n  The critical loop is the loop with the maximum loop 
bound. 

n  The loop bound of the critical loop is the iteration 
bound. 
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Iteration bound: Example 

Precedence 
A0 → B0 ⇒ A1 → B1 ⇒ A2 → B2 ⇒ A3 → B3  
If 2D instead of 1D;  loop bound =6/2=3 
A0 → B0 ⇒ A2 → B2 ⇒ A4 → B4 ⇒ A6 → B6 
A1 → B1 ⇒ A3 → B3 ⇒ A5 → B5 ⇒ A7 → B7 

A B 
(2) 

1D 
(4) 

Iteration bound: Example 
n  Iteration bound 

n  Example  
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Algorithms for Computing 
Iteration Bound 

Longest Path Matrix Algorithm 
n  A series of matrices are constructed L(m), 

m=1,2,..d, where d is the number of delays 
in the DFG. 

n  The value of          is the longest 
computation time of all paths from delay 
element di to delay element dj that passes 
through m-1 delay elements, if no such 
path, then          = -1. 
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Longest Path Matrix Algorithm 

n  First determine        à L(1) 
n  Then high order matrices are computed by 
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Longest Path Matrix Algorithm 
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Longest Path Matrix Algorithm 
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