
1

 CSE4210 Architecture & Hardware for DSP

CChhaapptteerr 44

IItteerraattiivvee BBoouunndd

Instructor: Prof. Peter Lian
Department of Electrical

Engineering & Computer Science
Lassonde School of Engineering

York University

 CSE4210 Architecture & Hardware for DSP

Graphical Representation

2

DSP Algorithms
n  DSP algorithms are described by nonterminating

programs, which execute the same code
repetitively.

	 	 	 	 Y(n)=a*x(n)+b*x(n-‐1)+c*x(n-‐2),	 for	 n=1	 to	 ∞
n  An iteration – execution of all the computations in

the algorithm once.
n  Critical path – the longest path between inputs

and outputs in combinational logic circuit.
n  Latency – the difference between the time an

output is generated and the time at which its
corresponding input was received by the system.

Representation of DSP Algorithms

n  Graphical representations are efficient for
investigating and analyzing data flow
properties of DSP algorithms.

n  Good for map DSP algorithms to hardware
implementations

n  Four methods for graphical representation
n  Block diagram
n  Signal-flow graph (SFG)
n  Data-flow graph (DFG)
n  Dependence graph (DG)

3

Block Diagram
n  Consists of functional blocks connected with

directed edges, which represent data flow from
its input block to its output block.

n  Edges may or may not contain delay elements.
n  Example
	 	 	 	 Y(n)=a*x(n)+b*x(n-‐1)+c*x(n-‐2)	

Signal-Flow Graph (SFG)
n  SFG: a collection of nodes and directed edges

n  Nodes: represent computations and/or task, sum all
incoming signals

n  Directed edge (j,k): denotes a linear transformation
from the input signal at node j to the output signal at
node k.

n  Linear SFGs can be transformed into different forms
without changing the system functions.

n  Usually used for linear time-invariant DSP systems

4

Data-Flow Graph (DFG) (1)
n  DFG: nodes represent computation(or functions or

subtasks), while the directed edges represent data paths
(data communications between nodes), each edge has a
nonnegative number of delays associated with it.

n  DFG: captures the data-driven property of DSP
algorithm: any node can fire (perform its computation)
whenever all its input data are available.

A0 A1

DFG Constraints(2)

n  Each edge describes a precedence
constraint between two nodes
n  Intra-iteration precedence constraint: if the

edge has zero delays.
n  Inter-iteration precedence constraint: if the

edge has one or more delays.
n  DFGs and Block Diagrams can be used to

describe both linear single-rate and
nonlinear multi-rate DSP systems.

5

Examples of DFG
n  Nodes are complex blocks (coarse-grain)

n  Nodes can describe expanders/decimators
in multi-rate DFGs

Example of DFG(2)
n  y(n)=a*y(n-1)+x(x)

DFG Synchronous DFG

(4)

1

A

B

A

B

⊕⊕

⊗⊗

y(n) x(n)
(2)

(4)

(2)

1

1

1
D

D

a

6

Synchronous DFG (SDFG)
n  SDFG is a special case of data-flow graph.
n  In SDFG, the number of data samples produced

or consumed are specified a priori.
n  For example, node B needs 1 data unit to fire

and produces one data unit after completion.
n  In multi-rate systems, that number could be

greater than 1.
n  By using node replication, a multi-rate system

could be changed to a single-rate system.

Dependence Graph (DG)
n  DG is a directed graph that shows the

dependence of the computations in an
algorithm

n  The nodes represent computations and the
edges represent precedence constraints
among nodes.

n  The DFG nodes are executed repetitively,
while nodes in a dependence graph
contains computations for all iterations.

n  DFs are used for systolic array design.

7

Dependence Graph

0

0

0

0

y0 y1 y2 y3 y4

b3

b2

b1

b0

x0 x1 x2 x3 x4

 CSE4210 Architecture & Hardware for DSP

Iteration Bound

8

Iteration bound
n  Iteration: execution of all computations in

the algorithm once.
n  Iteration period: the time required to

perform the iteration (sample period).
n  Feedback imposes an inherent bound on

the iteration period,
n  Iteration bound is a characteristic of the

representation of an algorithm in the form
of DFG. Different representations of the
same algorithm may lead to different
iteration bounds.

Iteration bound
n  The feedback imposes an inherent

fundamental lower bound on the
achievable iteration period.

n  It is not possible to achieve iteration period
less than the iteration bound even if we
have an infinite processing power.

9

Determine Iteration Bound
n  Edges describe a precedence constraints

n  intra-iteration denotes “→”
n  inter-iteration denotes “⇒”

n  Critical path is the path with the longest
computation time among all paths that contains
no delay.

n  A non-recursive DFG contains no loops
n  A recursive DFG contains at least one loop.
n  A loop is a directed path that begins and ends at

the same node.

Precedence Constraints

n  The edge from A to B enforces the intra-iteration
precedence, the kth iteration of A must be done
before the kth iteration of B. AK → BK

n  The edge from B to A enforces the inter-iteration
precedence. The kth iteration of B must be executed
before the (k+1)th iteration of A. BK ⇒ AK+1

n  A0 → B0 ⇒ A1 → B1 ⇒ A2 → B2 ….

(2)

A B

1D

(4)
(4) + X

(2)

1D

y(n)

x(n)

10

Critical Path

1

2

3

4

5

6

D

D

D

D

(1)

(1)

(1)

(2)

(2)

(2)

d1

d2

d3

d4

A B

(2)

1D

(4)

Critical path 6->3->2->1 = 5 unit of time (u.t.)

5->3->2->1 5 u.t.

Critical Path A->B 6 u.t.

Recursive DFG Non-recursive DFG

Determine Iteration Bound
n  For recursive DFG, there is a fundamental lower

bound “iteration bound” T∞
n  Loop bound of the l-th loop = tl/wl

n  tl is loop computation time,
n  wl is the delay in the loop.

n  The critical loop is the loop with the maximum loop
bound.

n  The loop bound of the critical loop is the iteration
bound.

11

Iteration bound: Example

Precedence
A0 → B0 ⇒ A1 → B1 ⇒ A2 → B2 ⇒ A3 → B3
If 2D instead of 1D; loop bound =6/2=3
A0 → B0 ⇒ A2 → B2 ⇒ A4 → B4 ⇒ A6 → B6
A1 → B1 ⇒ A3 → B3 ⇒ A5 → B5 ⇒ A7 → B7

A B
(2)

1D
(4)

Iteration bound: Example
n  Iteration bound

n  Example

A B C (2)
(4)

(5)

2D

D

11
1
11,

2
6max =⎟

⎠

⎞
⎜
⎝

⎛=∞T

⎭
⎬
⎫

⎩
⎨
⎧

=
∈

∞
l

l
Ll w
t

T max

12

 CSE4210 Architecture & Hardware for DSP

Algorithms for Computing
Iteration Bound

Longest Path Matrix Algorithm
n  A series of matrices are constructed L(m),

m=1,2,..d, where d is the number of delays
in the DFG.

n  The value of is the longest
computation time of all paths from delay
element di to delay element dj that passes
through m-1 delay elements, if no such
path, then = -1.

)(
,
m
jiℓ

)(
,
m
jiℓ

13

Longest Path Matrix Algorithm

n  First determine à L(1)
n  Then high order matrices are computed by

where K is the set of integers k in the interval
[1,d] such that neither nor holds

())(,)1(
,

)1(
, ,1max m

jkkiKk

m
ji ℓℓℓ +−=

∈

+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
∈

∞ m
T

m
ii

dmi

)(
,

},..2,1{,
max

ℓ

ℓ i, j
(1)

ℓ i,k
(1) = −1 ℓk, j

(1) = −1

Longest Path Matrix Algorithm

ℓ3,1
(1) = 2+1+1+1= 5

L(1) =

−1 0 −1 −1
4 −1 0 −1
5 −1 −1 0
5 −1 −1 −1

"

#

$
$
$
$

%

&

'
'
'
'

L(2) =

4 −1 0 −1
5 4 −1 0
5 5 −1 −1
−1 5 −1 −1

"

#

$
$
$
$

%

&

'
'
'
'

1

2

3

4

5

6

D

D

D

D

(1)

(1)

(1)

(2)

(2)

(2)

d1

d2

d3

d4

14

Longest Path Matrix Algorithm

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−

−

=

51910
55910
4589
1458

1519
1559
1458
0145

)4(

)3(

L

L

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−

−

−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−

−−

−−−

=

1151
1155
0145
1014

1115
0115
1014
1101

)2(

)1(

L

L

2,
4
5,

4
5,

4
8,

4
8,

3
5,

3
5,

3
5,

2
4,

2
4max =

⎭
⎬
⎫

⎩
⎨
⎧=∞T

