CSE4210 Architecture & Hardware for DSP

| Chapter 4

‘ Digital Filter

Instructor: Prof. Peter Lian

Department of Electrical
Engineering & Computer Science

Lassonde School of Engineering
York University

CSE4210 Architecture & Hardware for DSP

‘ Basics of Digital Filter




Filter Specifications

Transition-

band
/

<«— Passband —»

An Example of a Lowpass Filter

Filter spec :
Stopband attenuation
at least 40dB.

—20 -

-40 -

—-60 -

Frequency Response / dB

-80 - — T —— r—t—r
0.0 01 02 03 04 05
Normalized Frequency




| Finite Impulse Response (FIR) Filters

| Example of an FIR filter
y(n)=h0)x(n)+h(H)x(n=1)+---+h(6)x(n-6)

Impulse response
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| Representation of an FIR filter

| By convolution sum

y(n)=1(0)x(n)+ A1) x(n=1)+- -+ h(N—l)x(n—N+l)

= E h(m) x(n—m)

m=0

By z-transform transfer function




| Implementation of FIR Filters

| Three main components:
Adder- @

Multiplier - —Jp—

Delay — T

x(n) x(n-N+1)

T - T ——— T
IO 4 h(l)i h(2)£ A(N-1)
> A

1 >

y(n)

h(n), n=0,...,N-1, are coefficients.

| Demonstrations of FIR Filters

| Let us consider a low pass FIR filter,

y(n)= i[x(n) +x(n—1)+x(n—2)+ x(n— 3)] (1)

Its z-transform transfer function is:

Y(Z)_l -1 -2 -3
X(Z)_4[1+Z +z 4z } (2)

H(z)=




| How Does an FIR Filter Works?

‘ y(n)= %[x(n) +x(n—1D+x(n—2)+ x(n— 3)] (D

o > D > D D
Jr ’T jr y(n)
>® > ® > ®— ®—
1/4

| Frequency Response

‘ Consider a complex exponential input sequence

jan

x(n)=e’”" —-o<n<ox

If the impulse response of the system is h(n), the
output is :

= Jjw(n-m) Jjon = - jom
H(ejw)iscalled y(n) m;_x}l(m)e e I]l;fl(m)e
frequency ”
responsg = H(e" )X(l’l)
<)O

H(e_/w) _ ih(m)e—./fum — H(Z) ‘Z#‘jw

m=-0o0




Demonstration 1

z-plane Representation of an FIR Filter

Demonstration 2

Frequency Response in a z-plane




Demonstration 3

Peel off the Frequency Response

Compute Frequency Response

Magnitude and phase response

H(eja)) _ H(ej(u) jO(w)

Magnitude Phase

response response
Compute frequency response using Matlab
[HIW]=frqu(blalN); b k -k
-- returns the N-point frequency () — B(z) _ Eo (k)2
vector w in radians and the N- A(z) E a(k)z™*

k=0

point complex frequency response
vector H of the B(2)/A(z).




| Example 1: H(z) =1+ 2™

jﬂ _jﬂ
| _je e’ +e?

2

HE)=1+e7"=2e¢

T4
2

‘ H(e™)=1-e7" =¢"* 7% 2

y(n)




| Properties of FIR Filter

1 |HE) = [H(E)

2. /H(?) = -/ H(E”)

N-1

Proof: H(e”)= Y h(m)e'""
m=0

={]§;h(m) e'j“””} , h(m) real

= H (/")

| Properties of FIR Filter

) N-l ‘
Proof : H(ef(“’+2’””)) = E h(n) o~ (@+2mm)n

n=0

N_l . .
= D h(n)e™™ = H(e"")

n=0

For h(n) real, knowledge of H (e/~) between
w = 0 and w = n = knowledge of H (e/*)
w for any w.




| Linear Phase FIR Filter

| An FIR filter may be designed to have
linear phase characteristics.
The phase response of a linear phase
FIR filter is either -aw or B-aw where
a =(N-1)/2 , wis the frequency,
p==0.57, and N is the filter length.
Its frequency response is given by e
or ejjzt”'Nz_l‘”R(a,), where R(w) is a real
function.

N-1
2

wR(a))

| Linear Phase FIR Filter

Its impulse response is either
symmetrical or anti-symmetrical.

If its impulse response is symmetrical,
its phase response is -aw.

If its impulse response is anti-
symmetrical, its phase response is

p - aw.
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l Symmetrical Impulse Response, N odd

‘ N Centre of symmetry
a

W

h(n)

-8 Centre of symmetry
a=3.5
| h(n)
1 | 6
! n
0 2 3 4 5 7
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lAnti-symmetricaI Impulse Response, N odd

Centre of antisymmetry

Il
W

‘ N
a

h(n)

N=6 Centre of antisymmetry

h(n)
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|Frequency Response of Linear Phase FIR Filter

4 types, depending on whether N is odd
or even and whether the impulse
response is symmetrical or anti-
symmetrical.

| Type 1:Symmetrical Impulse Response, N odd.

=

-1

™ ‘

N-1

HE)=e7"*Y a(n)cos(w n)

a(0) =h(2%!) Y, a(n) cos(an)
a(n) =2 h{% - n) ”

n=1,2, ., 2t

e

13



| Proof:

N-3

|H(ej“’)=2h(n)e"’“’” h(a5t)e NZh(n)e‘j“”’

—e /T {N 2h(n)cos [a)(% - n)] +h (%)}

‘ Type 2 :Symmetrical Impulse Response, N even

H(e™)=¢e e Nzi (n)cos(a)(n—%))

b(n)=2h(4-n), n=12,L ,&
> b(n) cos(w(n - 5

/\ /H(e]w)— 0 at w=unx
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lType 3:Anti-symmetrical Impulse Response, N odd

N

‘ H(e™) = 2 c(n)sin(wn), h(N ‘1)=o

2
c(n)=2h( ) _1L2.L N—l
Y c(n) sin(wn)
n
H(ejw)= 0 ata w=0 or x
0 TT

T|ype 4:Anti-symmetrical Impulse Response, N even

He")=¢"’ Ed(n)sm w(n-1))
d(n)=2h( -n), n=12,-
S d(n) sm(a)(n o))

HE)= 0at o=
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| FIR filter length estimation

~20log(,[6 5.)-13
I 2(,/9,90,) 1
14.6Af

0, <1, Passband ripple,
0, <1, Stopband ripple/attenuation
Af = Normalized transition-width

= |stopband edge - passband edge]

| Filter length and complexity

| FIR filter transfer function:

-1 ) _
H(z)=a,+az"' +a,z7 +L +a,z™"

Filter length=the order of transfer function
+1.

Complexity=No. of taps (coefficients) for a
filter.

For a symmetric filter, the filter complexity
is about the half of the filter length.
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| Complexity of a FIR Filter

~20log(,[d 5.)-13
I g(/9,9,) ol
14.6Af

2000

where ¢, and o, passband ripple:  0.01
stopband ripple: -40 dB

are passband and 15007
stopband ripple;

1000

Filter Length

Af'is the transition
width.

5001

0 0.005 0.01 0.015 0.02
Normalize Transition Width

| FIR Filters

Advantages :
Exact linear-phase characteristic.
Intrinsically stable implementation.
Disadvantages :

Require a high-order transfer function
compared with infinite-duration
impulse response filters.
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| FIR Filter Design

Windowing
Frequency sampling
Weighted Chebyshev approximation

Parks-McClellan Optimal Equiriple FIR Filter
Design Using Matlab

| Matlab functions for design FIR filter: “firpmord”
and “firpm”.

How to use the functions:
[N,Fi,Ai,W]=firpmord(F,A,Dev,Fs);
B=firom(N,Fi,Ai,W) returns the coefficients of the
resulting FIR filter which has the best approximation
to the desired frequency response described by F, A,
and Dev, where

F is a vector of filter bandedges in Hz.

A is a real vector indicate the desired amplitude on the
bands defined by F.

Dev is a vector of maximum deviations or ripples allowable
for each band. Dev must have the same length as A.

Fs is the sampling frequency.
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Example: a lowpass filter with fpass=1500Hz,
fstop=2000Hz,fsample=8000Hz, rp=rs=0.01

F=[1500, 2000];A=[1,0]; Dev=[0.01,0.01]
Using Matlab command “firpmord” to
estimate the filter length.

[N,Fi,Ai,W]=firomord(F,A,Dev,8000);
Find the coefficients:
B=firpm(N,Fi,Ai,W);

Plot frequency response : freqz(B,1);
Need help: type “help firpom” in Matlab.

Coefficients

h(0)= 0.0029=h(31)
h(1)= 0.0094=h(30)
h(2)= -0.0037=h(29)
h(3)= -0.0109=h(28)
h(4)= -0.0014=h(27)
h(5)= 0.0167=h(26)
h(6)= 0.0100=h(25)
h(7)= -0.0204=h(24)
h(8)= -0.0249=h(23)
h(9)= 0.0190=h(22)
h(10)= 0.0479=h(21)
h(11)= -0.0064=h(20)
h(12)= -0.0855=h(19)
h(13)= -0.0358=h(18)
h(14)= 0.1853=h(17)
h(15)= 0.4033=h(16)
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| Frequency Response
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